

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

- → Reduce $(\lambda x. y (\lambda v. x v)) (\lambda y. v y)$ to $\beta \eta$ normal form.
- → Find an encoding for function fs, sn, and pair such that fs $(pair a b) =_{\beta} a$ and sn $(pair a b) =_{\beta} b$.
- → (harder) Find an encoding of list objects, i.e. for the function cons and nil. Then find an encoding for map (that is, map f [x₁,...,x_n] = [f x₁,...,f x_n]), and for foldl (that is, fold f i [x₁,...,x_n] = f x₁ (f x₂ (f x₃ (...(f x_n i)))...))

Content

	Rough timeline
Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[2,3,4 ^{<i>a</i>}]
Higher Order Logic	[5,6 ^b ,7]
Term rewriting	[8,9,10 ^{<i>c</i>}]
Proof & Specification Techniques	
• Isar	[11,12 ^d]
 Inductively defined sets, rule induction 	[13 ^e ,15]
 Datatypes, recursion, induction 	[16,17 ^{<i>f</i>} ,18,19]
 Calculational reasoning, mathematics style proofs 	[20]
 Hoare logic, proofs about programs 	[21 ^g ,22,23]

^{*a*}a1 out; ^{*b*}a1 due; ^{*c*}a2 out; ^{*d*}a2 due; ^{*e*}session break; ^{*f*}a3 out; ^{*g*}a3 due

 λ calculus is inconsistent

Can find term R such that $R R =_{\beta} \operatorname{not}(R R)$

There are more terms that do not make sense:

12, true false, etc.

Solution: rule out ill-formed terms by using types. (Church 1940)

Introducing types

Idea: assign a type to each "sensible" λ term.

Examples:

- \rightarrow for term t has type α write $t :: \alpha$
- → if x has type α then $\lambda x. x$ is a function from α to α Write: $(\lambda x. x) :: \alpha \Rightarrow a$

\rightarrow for s t to be sensible:

 \boldsymbol{s} must be function

t must be right type for parameter

If $s :: \alpha \Rightarrow \beta$ and $t :: \alpha$ then $(s t) :: \beta$

THAT'S ABOUT IT

Now formally again

Terms: $t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$ $v, x \in V, c \in C, V, C$ sets of names

Types: $\tau ::= b \mid \nu \mid \tau \Rightarrow \tau$ $b \in \{bool, int, ...\}$ base types $\nu \in \{\alpha, \beta, ...\}$ type variables

 $\alpha \Rightarrow \beta \Rightarrow \gamma \quad = \quad \alpha \Rightarrow (\beta \Rightarrow \gamma)$

Context Γ :

 Γ : function from variable and constant names to types.

Term t has type τ in context Γ : $\Gamma \vdash t :: \tau$

Examples

 $\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$

 $[y \leftarrow \texttt{int}] \vdash y :: \texttt{int}$

 $[z \leftarrow \texttt{bool}] \vdash (\lambda y. \ y) \ z :: \texttt{bool}$

$$[] \vdash \lambda f x. f x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta$$

A term t is well typed or type correct if there are Γ and τ such that $\Gamma \vdash t :: \tau$

Variables:	$\overline{\Gamma \vdash x :: \Gamma(x)}$
Application:	$\frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau_1 \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau_1}$
Abstraction:	$\frac{\Gamma[x \leftarrow \tau_1] \vdash t :: \tau_2}{\Gamma \vdash (\lambda x. \ t) :: \tau_1 \Rightarrow \tau_2}$

$$\frac{\overline{[x \leftarrow \alpha, y \leftarrow \beta] \vdash x :: \alpha}}{[x \leftarrow \alpha] \vdash \lambda y. \ x :: \beta \Rightarrow \alpha}$$
$$\overline{[] \vdash \lambda x \ y. \ x :: \alpha \Rightarrow \beta \Rightarrow \alpha}$$

$$\begin{array}{l} \overline{\Gamma \vdash f :: \alpha \Rightarrow (\alpha \Rightarrow \beta)} \quad \overline{\Gamma \vdash x :: \alpha} \\ \hline \overline{\Gamma \vdash f x :: \alpha \Rightarrow \beta} \quad \overline{\Gamma \vdash x :: \alpha} \\ \hline \overline{\Gamma \vdash f x :: \alpha \Rightarrow \beta} \\ \hline \hline [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f \ x \ x :: \alpha \Rightarrow \beta \\ \hline \hline [] \vdash \lambda f \ x. \ f \ x \ x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta \end{array}$$

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

A term can have more than one type.

Example: $[] \vdash \lambda x. \ x :: bool \Rightarrow bool$ $[] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$

Some types are more general than others:

 $\tau \lesssim \sigma$ if there is a substitution S such that $\tau = S(\sigma)$

Examples:

$$\texttt{int} \Rightarrow \texttt{bool} \quad \lesssim \quad \alpha \Rightarrow \beta \quad \lesssim \quad \beta \Rightarrow \alpha \quad \not\lesssim \quad \alpha \Rightarrow \alpha$$

Fact: each type correct term has a most general type

Formally:

 $\Gamma \vdash t :: \tau \implies \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$

It can be found by executing the typing rules backwards.

- → type checking: checking if $\Gamma \vdash t :: \tau$ for given Γ and τ
- → type inference: computing Γ and τ such that $\Gamma \vdash t :: \tau$

Type checking and type inference on λ^{\rightarrow} are decidable.

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: $\Gamma \vdash s :: \tau \land s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t :: \tau$

This property is called **subject reduction**

β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)

$\rightarrow =_{\beta}$ is decidable

To decide if $s =_{\beta} t$, reduce s and t to normal form (always exists, because \longrightarrow_{β} terminates), and compare result.

$ightarrow =_{lphaeta\eta}$ is decidable

This is why Isabelle can automatically reduce each term to $\beta\eta$ normal form.

Not all computable functions can be expressed in λ^{\rightarrow} !

How can typed functional languages then be turing complete?

Fact:

Each computable function can be encoded as closed, type correct λ^{\rightarrow} term using $Y :: (\tau \Rightarrow \tau) \Rightarrow \tau$ with $Y t \longrightarrow_{\beta} t (Y t)$ as only constant.

- \rightarrow *Y* is called fix point operator
- \rightarrow used for recursion
- → lose decidability (what does $Y(\lambda x.x)$ reduce to?)

Types: $\tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, ..., \tau) K$ $b \in \{bool, int, ...\}$ base types $\nu \in \{\alpha, \beta, ...\}$ type variables $K \in \{set, list, ...\}$ type constructors $C \in \{order, linord, ...\}$ type classes

- **Terms:** $t ::= v | c | ?v | (t t) | (\lambda x. t)$ $v, x \in V, c \in C, V, C$ sets of names
- → type constructors: construct a new type out of a parameter type.
 Example: int list
- type classes: restrict type variables to a class defined by axioms.
 Example: α :: order
- → schematic variables: variables that can be instantiated.

Type Classes

→ similar to Haskell's type classes, but with semantic properties
 axclass order < ord
 order_refl: "x ≤ x"
 order_trans: "[x ≤ y; y ≤ z]] ⇒ x ≤ z"
 ...

➔ theorems can be proved in the abstract

 $\textbf{lemma order_less_trans: "} \land x :::'a :: order. [[x < y; y < z]] \Longrightarrow x < z"$

 \rightarrow can be used for subtyping

```
axclass linorder < order
```

```
linorder_linear: "x \le y \lor y \le x"
```

 \rightarrow can be instantiated

```
instance nat :: "{order, linorder}" by ...
```


 \rightarrow X and Y must be **instantiated** to apply the rule

But: lemma "x + 0 = 0 + x"

- $\rightarrow x$ is free
- \clubsuit convention: lemma must be true for all x
- \rightarrow during the proof, x must not be instantiated

Solution:

Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples:

$$\begin{array}{ll} ?X \wedge ?Y &=_{\alpha\beta\eta} & x \wedge x & [?X \leftarrow x, ?Y \leftarrow x] \\ ?P x &=_{\alpha\beta\eta} & x \wedge x & [?P \leftarrow \lambda x. \ x \wedge x] \\ P (?f x) &=_{\alpha\beta\eta} & ?Y x & [?f \leftarrow \lambda x. \ x, ?Y \leftarrow P] \end{array}$$

Higher Order: schematic variables can be functions.

- → Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- → Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

- → Most cases are well-behaved
- → Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

- \rightarrow is a term in β normal form where
- \rightarrow each occurrence of a schematic variable is of the from $?f t_1 \ldots t_n$
- → and the $t_1 \ldots t_n$ are η -convertible into n distinct bound variables

- → Simply typed lambda calculus: λ^{\rightarrow}
- → Typing rules for λ^{\rightarrow} , type variables, type contexts
- → β -reduction in λ^{\rightarrow} satisfies subject reduction
- → β -reduction in λ^{\rightarrow} always terminates
- ➔ Types and terms in Isabelle

- → Construct a type derivation tree for the term $\lambda x \ y \ z. \ z \ x \ (y \ x)$
- → Find a unifier (substitution) such that $\lambda x \ y \ z$. ?*F* $y \ z = \lambda x \ y \ z$. *z* (?*G* $x \ y$)