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Exercises from last time

➜ Reduce (λx. y (λv. x v)) (λy. v y) to βη normal form.

➜ Find an encoding for function fs, sn, and pair such that fs (pair a b) =β a and
sn (pair a b) =β b.

➜ (harder) Find an encoding of list objects, i.e. for the function cons and nil. Then find

an encoding for map (that is, map f [x1, . . . , xn] = [f x1, . . . , f xn]), and for foldl
(that is, foldl f i [x1, . . . , xn] = f x1 (f x2 (f x3 (. . . (f xn i))) . . .))
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Content

Rough timeline

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [2,3,4a]

• Higher Order Logic [5,6b,7]

• Term rewriting [8,9,10c]

➜ Proof & Specification Techniques

• Isar [11,12d]

• Inductively defined sets, rule induction [13e,15]

• Datatypes, recursion, induction [16,17f ,18,19]

• Calculational reasoning, mathematics style proofs [20]

• Hoare logic, proofs about programs [21g,22,23]

aa1 out; ba1 due; ca2 out; da2 due; esession break; fa3 out; ga3 due
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λ calculus is inconsistent

Can find term R such that R R =β not(R R)

There are more terms that do not make sense:
1 2, true false, etc.

Solution : rule out ill-formed terms by using types.
(Church 1940)
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Introducing types

Idea: assign a type to each “sensible” λ term.

Examples:

➜ for term t has type α write t :: α

➜ if x has type α then λx. x is a function from α to α

Write: (λx. x) :: α ⇒ a

➜ for s t to be sensible:
s must be function

t must be right type for parameter

If s :: α ⇒ β and t :: α then (s t) :: β
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THAT ’S ABOUT IT
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NOW FORMALLY AGAIN
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Syntax for λ→

Terms: t ::= v | c | (t t) | (λx. t)
v, x ∈ V, c ∈ C, V, C sets of names

Types: τ ::= b | ν | τ ⇒ τ

b ∈ {bool,int, . . .} base types
ν ∈ {α, β, . . .} type variables

α⇒ β ⇒ γ = α⇒ (β ⇒ γ)

Context Γ:

Γ: function from variable and constant names to types.

Term t has type τ in context Γ: Γ ⊢ t :: τ
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Examples

Γ ⊢ (λx. x) :: α⇒ α

[y ← int] ⊢ y :: int

[z ← bool] ⊢ (λy. y) z :: bool

[] ⊢ λf x. f x :: (α⇒ β)⇒ α⇒ β

A term t is well typed or type correct
if there are Γ and τ such that Γ ⊢ t :: τ
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Type Checking Rules

Variables: Γ ⊢ x :: Γ(x)

Application:
Γ ⊢ t1 :: τ2 ⇒ τ1 Γ ⊢ t2 :: τ2

Γ ⊢ (t1 t2) :: τ1

Abstraction:
Γ[x← τ1] ⊢ t :: τ2

Γ ⊢ (λx. t) :: τ1 ⇒ τ2
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Example Type Derivation:

[x← α, y ← β] ⊢ x :: α

[x← α] ⊢ λy. x :: β ⇒ α

[] ⊢ λx y. x :: α⇒ β ⇒ α
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More complex Example

Γ ⊢ f :: α⇒ (α⇒ β) Γ ⊢ x :: α

Γ ⊢ f x :: α⇒ β Γ ⊢ x :: α

Γ ⊢ f x x :: β

[f ← α⇒ α⇒ β] ⊢ λx. f x x :: α⇒ β

[] ⊢ λf x. f x x :: (α⇒ α⇒ β)⇒ α⇒ β

Γ = [f ← α⇒ α⇒ β, x← α]
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More general Types

A term can have more than one type.

Example: [] ⊢ λx. x :: bool⇒ bool

[] ⊢ λx. x :: α⇒ α

Some types are more general than others:

τ . σ if there is a substitution S such that τ = S(σ)

Examples:

int⇒ bool . α⇒ β . β ⇒ α 6. α⇒ α
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Most general Types

Fact: each type correct term has a most general type

Formally:
Γ ⊢ t :: τ =⇒ ∃σ. Γ ⊢ t :: σ ∧ (∀σ′. Γ ⊢ t :: σ′ =⇒ σ′ . σ)

It can be found by executing the typing rules backwards.

➜ type checking: checking if Γ ⊢ t :: τ for given Γ and τ

➜ type inference: computing Γ and τ such that Γ ⊢ t :: τ

Type checking and type inference on λ→ are decidable.
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What about β reduction?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: Γ ⊢ s :: τ ∧ s −→β t =⇒ Γ ⊢ t :: τ

This property is called subject reduction
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What about termination?

β reduction in λ→ always terminates.

(Alan Turing, 1942)

➜ =β is decidable
To decide if s =β t, reduce s and t to normal form (always exists, because −→β

terminates), and compare result.

➜ =αβη is decidable
This is why Isabelle can automatically reduce each term to βη normal form.
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What does this mean for Expressiveness?

Not all computable functions can be expressed in λ→!

How can typed functional languages then be turing complete?

Fact:
Each computable function can be encoded as closed, type correct λ→ term
using Y :: (τ ⇒ τ)⇒ τ with Y t −→β t (Y t) as only constant.

➜ Y is called fix point operator

➜ used for recursion

➜ lose decidability (what does Y (λx.x) reduce to?)
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Types and Terms in Isabelle

Types: τ ::= b | ′ν | ′ν :: C | τ ⇒ τ | (τ, . . . , τ) K

b ∈ {bool,int, . . .} base types
ν ∈ {α, β, . . .} type variables
K ∈ {set,list, . . .} type constructors
C ∈ {order,linord, . . .} type classes

Terms: t ::= v | c | ?v | (t t) | (λx. t)

v, x ∈ V, c ∈ C, V, C sets of names

➜ type constructors : construct a new type out of a parameter type.
Example: int list

➜ type classes : restrict type variables to a class defined by axioms.
Example: α :: order

➜ schematic variables : variables that can be instantiated.
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Type Classes

➜ similar to Haskell’s type classes, but with semantic properties

axclass order < ord

order refl: ”x ≤ x”

order trans: ”[[x ≤ y; y ≤ z]] =⇒ x ≤ z”

. . .

➜ theorems can be proved in the abstract

lemma order less trans: ”
∧

x ::′a :: order. [[x < y; y < z]] =⇒ x < z”

➜ can be used for subtyping

axclass linorder < order
linorder linear: ”x ≤ y ∨ y ≤ x”

➜ can be instantiated

instance nat :: ”{order, linorder}” by . . .

19



Schematic Variables

X Y
X ∧ Y

➜ X and Y must be instantiated to apply the rule

But: lemma “x+ 0 = 0 + x”

➜ x is free

➜ convention: lemma must be true for all x

➜ during the proof , x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.
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Higher Order Unification

Unification:
Find substitution σ on variables for terms s, t such that σ(s) = σ(t)

In Isabelle:
Find substitution σ on schematic variables such that σ(s) =αβη σ(t)

Examples:

?X∧?Y =αβη x ∧ x [?X ← x, ?Y ← x]

?P x =αβη x ∧ x [?P ← λx. x ∧ x]

P (?f x) =αβη ?Y x [?f ← λx. x, ?Y ← P ]

Higher Order: schematic variables can be functions.
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Higher Order Unification

➜ Unification modulo αβ (Higher Order Unification) is semi-decidable

➜ Unification modulo αβη is undecidable

➜ Higher Order Unification has possibly infinitely many solutions

But:

➜ Most cases are well-behaved

➜ Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

➜ is a term in β normal form where

➜ each occurrence of a schematic variable is of the from ?f t1 . . . tn

➜ and the t1 . . . tn are η-convertible into n distinct bound variables
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We have learned so far...

➜ Simply typed lambda calculus: λ→

➜ Typing rules for λ→, type variables, type contexts

➜ β-reduction in λ→ satisfies subject reduction

➜ β-reduction in λ→ always terminates

➜ Types and terms in Isabelle
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Exercises

➜ Construct a type derivation tree for the term λx y z. z x (y x)

➜ Find a unifier (substitution) such that λx y z. ?F y z = λx y z. z (?G x y)
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