COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray
Exercises from last time

- Reduce \((\lambda x. y (\lambda v. x v)) (\lambda y. v y)\) to \(\beta\eta\) normal form.

- Find an encoding for function \(fs\), \(sn\), and \(pair\) such that \(fs (pair a b) =_\beta a\) and \(sn (pair a b) =_\beta b\).

- (harder) Find an encoding of list objects, i.e. for the function \(cons\) and \(nil\). Then find an encoding for \(map\) (that is, \(map f [x_1, \ldots, x_n] = [f x_1, \ldots, f x_n]\)), and for \(foldl\) (that is, \(foldl f i [x_1, \ldots, x_n] = f x_1 (f x_2 (f x_3 (\ldots (f x_n i))))\ldots\))
Content

→ Intro & motivation, getting started [1]

→ Foundations & Principles
 • Lambda Calculus, natural deduction [2,3,4^a]
 • Higher Order Logic [5,6^b,7]
 • Term rewriting [8,9,10^c]

→ Proof & Specification Techniques
 • Isar [11,12^d]
 • Inductively defined sets, rule induction [13^e,15]
 • Datatypes, recursion, induction [16,17^f,18,19]
 • Calculational reasoning, mathematics style proofs [20]
 • Hoare logic, proofs about programs [21^g,22,23]

^a a1 out; ^b a1 due; ^c a2 out; ^d a2 due; ^e session break; ^f a3 out; ^g a3 due
\lambda\text{ calculus is inconsistent}

Can find term R such that $R\ R =_{\beta} \text{not}(R\ R)$

There are more terms that do not make sense:

1 2, true false, etc.

\textbf{Solution}: rule out ill-formed terms by using types.
(Church 1940)
Introducing types

Idea: assign a type to each “sensible” \(\lambda \) term.

Examples:

- for _term_ \(t \) _has type_ \(\alpha \) write _write_ \(t :: \alpha \)
- if _\(x \) has type_ \(\alpha \) _then_ \(\lambda x. x \) _is a function from_ \(\alpha \) _to_ \(\alpha \)
 - Write: \((\lambda x. x) :: \alpha \Rightarrow a \)
- for _\(s t \) to be sensible:_
 - _\(s \) must be function_
 - _\(t \) must be right type for parameter_
 - If _\(s :: \alpha \Rightarrow \beta \) and_ \(t :: \alpha \) _then_ \((s t) :: \beta \)
THAT’S ABOUT IT
NOW FORMALLY AGAIN
Syntax for \(\lambda \rightarrow \)

Terms:

\[
t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)
\]

\(v, x \in V, \ c \in C, \ V, C \) sets of names

Types:

\[
\tau ::= b \mid \nu \mid \tau \Rightarrow \tau
\]

\(b \in \{\text{bool, int, ...}\} \) base types

\(\nu \in \{\alpha, \beta, ...\} \) type variables

\[
\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)
\]

Context \(\Gamma \):

\(\Gamma \): function from variable and constant names to types.

Term \(t \) **has type** \(\tau \) **in context** \(\Gamma \):

\(\Gamma \vdash t :: \tau \)
Examples

\[\Gamma \vdash (\lambda x. x) :: \alpha \Rightarrow \alpha \]

\[[y \leftarrow \text{int}] \vdash y :: \text{int} \]

\[[z \leftarrow \text{bool}] \vdash (\lambda y. y) \ z :: \text{bool} \]

\[[] \vdash \lambda f \ x. f \ x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta \]

A term \(t \) is **well typed** or **type correct** if there are \(\Gamma \) and \(\tau \) such that \(\Gamma \vdash t :: \tau \)
Type Checking Rules

Variables: \[\Gamma \vdash x :: \Gamma(x) \]

Application: \[\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau_1 \quad \Gamma \vdash t_2 :: \tau_2 \]
\[\Gamma \vdash (t_1 t_2) :: \tau_1 \]

Abstraction: \[\Gamma[x \leftarrow \tau_1] \vdash t :: \tau_2 \]
\[\Gamma \vdash (\lambda x. t) :: \tau_1 \Rightarrow \tau_2 \]
Example Type Derivation:

\[[x \leftarrow \alpha, y \leftarrow \beta] \vdash x :: \alpha \]
\[[x \leftarrow \alpha] \vdash \lambda y. x :: \beta \Rightarrow \alpha \]
\[[] \vdash \lambda x \ y. \ x :: \alpha \Rightarrow \beta \Rightarrow \alpha \]
More complex Example

Γ ⊢ f :: α ⇒ (α ⇒ β) Γ ⊢ x :: α
 Γ ⊢ f x :: α ⇒ β Γ ⊢ x :: α
 Γ ⊢ f x x :: β

[f ← α ⇒ α ⇒ β] ⊢ λx. f x x :: α ⇒ β

[] ⊢ λf x. f x x :: (α ⇒ α ⇒ β) ⇒ α ⇒ β

Γ = [f ← α ⇒ α ⇒ β, x ← α]
More general Types

A term can have more than one type.

Example: \[\lambda x. x :: \text{bool} \Rightarrow \text{bool} \]
\[\lambda x. x :: \alpha \Rightarrow \alpha \]

Some types are more general than others:

\(\tau \preceq \sigma \) if there is a substitution \(S \) such that \(\tau = S(\sigma) \)

Examples:

\(\text{int} \Rightarrow \text{bool} \preceq \alpha \Rightarrow \beta \preceq \beta \Rightarrow \alpha \not\preceq \alpha \Rightarrow \alpha \)
Most general Types

Fact: each type correct term has a most general type

Formally:

\[
\Gamma \vdash t :: \tau \quad \Rightarrow \quad \exists \sigma. \; \Gamma \vdash t :: \sigma \land (\forall \sigma'. \; \Gamma \vdash t :: \sigma' \Rightarrow \sigma' \preceq \sigma)
\]

It can be found by executing the typing rules backwards.

→ **type checking:** checking if \(\Gamma \vdash t :: \tau \) for given \(\Gamma \) and \(\tau \)

→ **type inference:** computing \(\Gamma \) and \(\tau \) such that \(\Gamma \vdash t :: \tau \)

Type checking and type inference on \(\lambda \rightarrow \) are decidable.
What about β reduction?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: $\Gamma \vdash s :: \tau \land s \rightarrow_\beta t \implies \Gamma \vdash t :: \tau$

This property is called subject reduction
What about termination?

\(\beta \) reduction in \(\lambda \rightarrow \) always terminates.

(Alan Turing, 1942)

\(\rightarrow =_{\beta} \) is decidable

To decide if \(s =_{\beta} t \), reduce \(s \) and \(t \) to normal form (always exists, because \(\lambda \rightarrow_{\beta} \) terminates), and compare result.

\(\rightarrow =_{\alpha \beta \eta} \) is decidable

This is why Isabelle can automatically reduce each term to \(\beta \eta \) normal form.
What does this mean for Expressiveness?

Not all computable functions can be expressed in $\lambda \rightarrow !$

How can typed functional languages then be turing complete?

Fact:
Each computable function can be encoded as closed, type correct $\lambda \rightarrow$ term using $Y :: (\tau \Rightarrow \tau) \Rightarrow \tau$ with $Y \ t \ \rightarrow_{\beta} \ t \ (Y \ t)$ as only constant.

→ Y is called fix point operator
→ used for recursion
→ lose decidability (what does $Y \ (\lambda x.x)$ reduce to?)
Types: \(\tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, \ldots, \tau) K \)

- \(b \in \{\text{bool, int, \ldots}\} \) base types
- \(\nu \in \{\alpha, \beta, \ldots\} \) type variables
- \(K \in \{\text{set, list, \ldots}\} \) type constructors
- \(C \in \{\text{order, linord, \ldots}\} \) type classes

Terms: \(t ::= v \mid c \mid ?v \mid (t t) \mid (\lambda x. t) \)

- \(v, x \in V \), \(c \in C \), \(V, C \) sets of names

- **type constructors**: construct a new type out of a parameter type.
 Example: \(\text{int list} \)

- **type classes**: restrict type variables to a class defined by axioms.
 Example: \(\alpha :: \text{order} \)

- **schematic variables**: variables that can be instantiated.
Type Classes

- similar to Haskell’s type classes, but with semantic properties

 axclass order < ord
 - order_refl: ""x ≤ x"
 - order_trans: ""[x ≤ y; y ≤ z] \implies x ≤ z"

- theorems can be proved in the abstract

 lemma order_less_trans: ""\bigwedge x ::'a :: order. [x < y; y < z] \implies x < z"

- can be used for subtyping

 axclass linorder < order
 - linorder_linear: ""x ≤ y \lor y ≤ x"

- can be instantiated

 instance nat :: ""{order, linorder}"" by \ldots
Schematic Variables

\[
\begin{array}{c|c}
X & Y \\
\hline
X \land Y \\
\end{array}
\]

→ \(X \) and \(Y \) must be **instantiated** to apply the rule

But: lemma “\(x + 0 = 0 + x \)”

→ \(x \) is free
→ convention: lemma must be true for all \(x \)
→ **during the proof**, \(x \) must **not** be instantiated

Solution:
Isabelle has **free** (\(x \)), **bound** (\(x \)), and **schematic** (\(?X \)) variables.

Only schematic variables can be instantiated.
Free converted into schematic after proof is finished.
Higher Order Unification

Unification:
Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

In Isabelle:
Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples:
\[
\begin{align*}
?X \land ?Y &=_{\alpha\beta\eta} x \land x & [?X \leftarrow x, ?Y \leftarrow x] \\
?P \; x &=_{\alpha\beta\eta} x \land x & [?P \leftarrow \lambda x. \; x \land x] \\
P \; (?f \; x) &=_{\alpha\beta\eta} ?Y \; x & [?f \leftarrow \lambda x. \; x, ?Y \leftarrow P]
\end{align*}
\]

Higher Order: schematic variables can be functions.
Higher Order Unification

- Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- Unification modulo $\alpha\beta\eta$ is undecidable
- Higher Order Unification has possibly infinitely many solutions

But:
- Most cases are well-behaved
- Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:
- is a term in β normal form where
- each occurrence of a schematic variable is of the from $\ ?f \ t_1 \ldots \ t_n$
- and the $t_1 \ldots \ t_n$ are η-convertible into n distinct bound variables
We have learned so far...

- Simply typed lambda calculus: \(\lambda \rightarrow \)
- Typing rules for \(\lambda \rightarrow \), type variables, type contexts
- \(\beta \)-reduction in \(\lambda \rightarrow \) satisfies subject reduction
- \(\beta \)-reduction in \(\lambda \rightarrow \) always terminates
- Types and terms in Isabelle
Exercises

→ Construct a type derivation tree for the term \(\lambda x \ y \ z. \ z \ x \ (y \ x) \)

→ Find a unifier (substitution) such that \(\lambda x \ y \ z. \ ?F \ y \ z = \lambda x \ y \ z. \ z \ (?G \ x \ y) \)