COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

Exercises from last time

\rightarrow Reduce $(\lambda x . y(\lambda v . x v))(\lambda y . v y)$ to $\beta \eta$ normal form.
\rightarrow Find an encoding for function $f s, s n$, and pair such that $f s($ pair $a b)={ }_{\beta} a$ and sn (pair ab) $={ }_{\beta} b$.
\rightarrow (harder) Find an encoding of list objects, i.e. for the function cons and nil. Then find an encoding for map (that is, map $f\left[x_{1}, \ldots, x_{n}\right]=\left[f x_{1}, \ldots, f x_{n}\right]$), and for foldl (that is, foldl $\left.f i\left[x_{1}, \ldots, x_{n}\right]=f x_{1}\left(f x_{2}\left(f x_{3}\left(\ldots\left(f x_{n} i\right)\right)\right) \ldots\right)\right)$

Content

\rightarrow Intro \& motivation, getting started
\rightarrow Foundations \& Principles

- Lambda Calculus, natural deduction
- Higher Order Logic
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Isar
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Calculational reasoning, mathematics style proofs
- Hoare logic, proofs about programs [21 $\left.{ }^{g}, 22,23\right]$

[^0]Can find term R such that $R R={ }_{\beta} \operatorname{not}(R R)$

There are more terms that do not make sense:
12 , true false, etc.

Solution: rule out ill-formed terms by using types. (Church 1940)

Introducing types

Idea: assign a type to each "sensible" λ term.

Examples:

\rightarrow for term t has type α write $t:: \alpha$
\rightarrow if x has type α then $\lambda x . x$ is a function from α to α Write: $(\lambda x . x):: \alpha \Rightarrow a$
\rightarrow for $s t$ to be sensible:
s must be function
t must be right type for parameter
If $s:: \alpha \Rightarrow \beta$ and $t:: \alpha$ then (st) :: β

That's about it

Now formally again

$$
\begin{aligned}
\text { Terms: } & t::=v|c|(t t) \mid(\lambda x . t) \\
& v, x \in V, \quad c \in C, \quad V, C \text { sets of names }
\end{aligned}
$$

Types: $\tau::=\mathrm{b}|\nu| \tau \Rightarrow \tau$ $b \in\{$ bool, int,$\ldots\}$ base types $\nu \in\{\alpha, \beta, \ldots\}$ type variables

$$
\alpha \Rightarrow \beta \Rightarrow \gamma=\alpha \Rightarrow(\beta \Rightarrow \gamma)
$$

Context Γ :

Γ : function from variable and constant names to types.

Term t has type τ in context $\Gamma: \quad \Gamma \vdash t:: \tau$

Examples

$$
\begin{aligned}
& \Gamma \vdash(\lambda x . x):: \alpha \Rightarrow \alpha \\
& {[y \leftarrow \text { int }] \vdash y:: \text { int }} \\
& {[z \leftarrow \text { bool }] \vdash(\lambda y . y) z:: \text { bool }} \\
& {[] \vdash \lambda f x . f x::(\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}
\end{aligned}
$$

A term t is well typed or type correct if there are Γ and τ such that $\Gamma \vdash t:: \tau$
Variables:

$$
\overline{\Gamma \vdash x:: \Gamma(x)}
$$

Application: $\quad \frac{\Gamma \vdash t_{1}:: \tau_{2} \Rightarrow \tau_{1} \quad \Gamma \vdash t_{2}:: \tau_{2}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau_{1}}$

Abstraction: $\quad \frac{\Gamma\left[x \leftarrow \tau_{1}\right] \vdash t:: \tau_{2}}{\Gamma \vdash(\lambda x . t):: \tau_{1} \Rightarrow \tau_{2}}$

Example Type Derivation:

$$
\frac{\frac{\overline{[x \leftarrow \alpha, y \leftarrow \beta] \vdash x:: \alpha}}{\frac{[x \leftarrow \alpha] \vdash \lambda y \cdot x:: \beta \Rightarrow \alpha}{[\vdash \vdash x y \cdot x:: \alpha \Rightarrow \beta \Rightarrow \alpha}}}{\frac{1}{[\vdash \lambda}}
$$

More complex Example

$$
\begin{gathered}
\overline{\overline{\Gamma \vdash f:: \alpha \Rightarrow(\alpha \Rightarrow \beta)} \overline{\Gamma \vdash x:: \alpha}} \overline{\frac{\Gamma \vdash f x:: \alpha \Rightarrow \beta}{\Gamma \vdash x:: \alpha}} \\
\frac{\overline{[f \vdash \alpha \Rightarrow x} \overline{[f \vdash}}{[\square \lambda f x . f x x::(\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta} \\
\\
\Gamma=[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]
\end{gathered}
$$

More general Types

A term can have more than one type.

Example: [] $\vdash \lambda x . x::$ bool \Rightarrow bool
 []$\vdash \lambda x . x:: \alpha \Rightarrow \alpha$

Some types are more general than others:
$\tau \lesssim \sigma$ if there is a substitution S such that $\tau=S(\sigma)$

Examples:

$$
\text { int } \Rightarrow \mathrm{bool} \lesssim \alpha \Rightarrow \beta \lesssim \beta \Rightarrow \alpha \quad \mathbb{Z} \quad \alpha \Rightarrow \alpha
$$

Most general Types

Fact: each type correct term has a most general type
Formally:
$\Gamma \vdash t:: \tau \quad \Longrightarrow \quad \exists \sigma . \Gamma \vdash t:: \sigma \wedge\left(\forall \sigma^{\prime} . \Gamma \vdash t:: \sigma^{\prime} \Longrightarrow \sigma^{\prime} \lesssim \sigma\right)$
It can be found by executing the typing rules backwards.
\rightarrow type checking: checking if $\Gamma \vdash t:: \tau$ for given Γ and τ
\rightarrow type inference: computing Γ and τ such that $\Gamma \vdash t:: \tau$

Type checking and type inference on $\lambda \rightarrow$ are decidable.

What about β reduction?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: $\quad \Gamma \vdash s:: \tau \wedge s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t:: \tau$

This property is called subject reduction

What about termination?

β reduction in $\lambda \rightarrow$ always terminates.

(Alan Turing, 1942)
$\rightarrow={ }_{\beta}$ is decidable
To decide if $s={ }_{\beta} t$, reduce s and t to normal form (always exists, because \longrightarrow_{β} terminates), and compare result.
$\rightarrow={ }_{\alpha \beta \eta}$ is decidable
This is why Isabelle can automatically reduce each term to $\beta \eta$ normal form.

What does this mean for Expressiveness?

Not all computable functions can be expressed in $\lambda \rightarrow$!

How can typed functional languages then be turing complete?

Fact:

Each computable function can be encoded as closed, type correct $\lambda \rightarrow$ term using $Y::(\tau \Rightarrow \tau) \Rightarrow \tau$ with $Y t \longrightarrow_{\beta} t(Y t)$ as only constant.
$\rightarrow Y$ is called fix point operator
\rightarrow used for recursion
\rightarrow lose decidability (what does Y ($\lambda x . x)$ reduce to?)

Types and Terms in Isabelle

Types: $\tau::=\mathrm{b} \mid$ ' $\nu|' \nu:: C| \tau \Rightarrow \tau \mid(\tau, \ldots, \tau) K$
$\mathrm{b} \in\{$ bool, int, $\ldots\}$ base types
$\nu \in\{\alpha, \beta, \ldots\}$ type variables
$K \in\{$ set, list,..$\}$ type constructors
$C \in\{$ order, linord, $\ldots\}$ type classes

Terms: $t::=v|c| ? v|(t t)|(\lambda x . t)$

$$
v, x \in V, \quad c \in C, \quad V, C \text { sets of names }
$$

\rightarrow type constructors: construct a new type out of a parameter type.
Example: int list
\rightarrow type classes: restrict type variables to a class defined by axioms.
Example: α :: order
\rightarrow schematic variables: variables that can be instantiated.

Type Classes

\rightarrow similar to Haskell's type classes, but with semantic properties
axclass order < ord

$$
\begin{aligned}
& \text { order_refl: " } x \leq x " \\
& \text { order_trans: "【x } " y ; y \leq z \rrbracket \Longrightarrow x \leq z "
\end{aligned}
$$

\rightarrow theorems can be proved in the abstract lemma order_less_trans: " $\wedge x$::'a :: order. $\llbracket x<y ; y<z \rrbracket \Longrightarrow x<z "$
\rightarrow can be used for subtyping
axclass linorder < order
linorder_linear: " $x \leq y \vee y \leq x "$
\rightarrow can be instantiated
instance nat :: " \{order, linorder\}" by ...

Schematic Variables

$$
\frac{X \quad Y}{X \wedge Y}
$$

$\rightarrow X$ and Y must be instantiated to apply the rule

$$
\text { But: } \quad \text { lemma " } x+0=0+x \text { " }
$$

$\rightarrow x$ is free
\rightarrow convention: lemma must be true for all x
\rightarrow during the proof, x must not be instantiated

Solution:

Isabelle has free (x), bound (x), and schematic (?X) variables.
Only schematic variables can be instantiated.
Free converted into schematic after proof is finished.

Higher Order Unification

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s)=\sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s)={ }_{\alpha \beta \eta} \sigma(t)$

Examples:

$$
\begin{array}{llll}
? X \wedge ? Y & ={ }_{\alpha \beta \eta} & x \wedge x & \\
? P X \leftarrow x, ? Y \leftarrow x] \\
P(? f x) & ={ }_{\alpha \beta \eta} & x \wedge x & \\
=_{\alpha \beta \eta} & ? Y x & & {[? P \leftarrow \lambda x \cdot x \wedge x]} \\
P(x \cdot x, ? Y \leftarrow P]
\end{array}
$$

Higher Order: schematic variables can be functions.

Higher Order Unification

\rightarrow Unification modulo $\alpha \beta$ (Higher Order Unification) is semi-decidable
\rightarrow Unification modulo $\alpha \beta \eta$ is undecidable
\rightarrow Higher Order Unification has possibly infinitely many solutions

But:

\rightarrow Most cases are well-behaved
\rightarrow Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

\rightarrow is a term in β normal form where
\rightarrow each occurrence of a schematic variable is of the from ?f $t_{1} \ldots t_{n}$
\rightarrow and the $t_{1} \ldots t_{n}$ are η-convertible into n distinct bound variables

We have learned so far...

\rightarrow Simply typed lambda calculus: λ^{\rightarrow}
\rightarrow Typing rules for λ^{\rightarrow}, type variables, type contexts
$\rightarrow \beta$-reduction in λ^{\rightarrow} satisfies subject reduction
$\rightarrow \beta$-reduction in λ^{\rightarrow} always terminates
\rightarrow Types and terms in Isabelle

Exercises

\rightarrow Construct a type derivation tree for the term $\lambda x y z . z x(y x)$
\rightarrow Find a unifier (substitution) such that $\lambda x y z . ? F y z=\lambda x y z . z(? G x y)$

[^0]: ${ }^{a}$ a1 out; ${ }^{b}$ a1 due; ${ }^{c}$ a2 out; ${ }^{d}$ a2 due; ${ }^{e}$ session break; ${ }^{f}$ a3 out; ${ }^{g}$ a3 due

