

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

Slide 1

Exercises from last time

- → Reduce $(\lambda x.\ y\ (\lambda v.\ x\ v))\ (\lambda y.\ v\ y)$ to $\beta\eta$ normal form. → Find an encoding for function fs, sn, and pair such that $fs\ (pair\ a\ b)$
- → Find an encoding for function fs, sn, and pair such that fs $(pair\ a\ b) =_{\beta} a$ and sn $(pair\ a\ b) =_{\beta} b$.
- → (harder) Find an encoding of list objects, i.e. for the function cons and nil. Then find an encoding for map (that is, map $f[x_1,\ldots,x_n]=[fx_1,\ldots,fx_n]$), and for foldl (that is, foldl $fi[x_1,\ldots,x_n]=fx_1$ ($fi(x_1,\ldots,x_n)=fi(x_1,\ldots,x_n)=fi(x_n)$)...))

Slide 2

Content

O • NICTA

Rough t	imeline
---------	---------

→ Intro & motivation, getting started

[1]

→ Foundations & Principles

Lambda Calculus, natural deduction [2,3,4°]
Higher Order Logic [5,6⁶,7]
Term rewriting [8,9,10°]

→ Proof & Specification Techniques

Isar [11,12^d]
Inductively defined sets, rule induction [13^c,15]
Datatypes, recursion, induction [16,17^f,18,19]
Calculational reasoning, mathematics style proofs [20]
Hoare logic, proofs about programs [21^g,22,23]

Slide 3

 λ calculus is inconsistent

Can find term R such that R $R =_{\beta} not(R R)$

There are more terms that do not make sense:

12, true false, etc.

Solution: rule out ill-formed terms by using types. (Church 1940)

Slide 4

.

2

 $[^]a$ a1 out; b a1 due; c a2 out; d a2 due; e session break; f a3 out; g a3 due

Introducing types

Idea: assign a type to each "sensible" λ term.

Examples:

- \rightarrow for term t has type α write $t :: \alpha$
- $\Rightarrow \text{ if } x \text{ has type } \alpha \text{ then } \quad \lambda x. \ x \quad \text{is a function from } \alpha \text{ to } \alpha$ Write: $(\lambda x. \ x) :: \alpha \Rightarrow a$
- → for st to be sensible: s must be function

t must be right type for parameter

If $s :: \alpha \Rightarrow \beta$ and $t :: \alpha$ then $(s t) :: \beta$

Slide 5

THAT'S ABOUT IT

Slide 6

Now Formally Again

Slide 7

Syntax for λ^{\rightarrow}

 $\begin{array}{ll} \text{Types:} & \tau & ::= & b \mid \nu \mid \tau \Rightarrow \tau \\ & b \in \{\texttt{bool}, \texttt{int}, \ldots\} \text{ base types} \\ & \nu \in \{\alpha, \beta, \ldots\} \text{ type variables} \end{array}$

 $\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$

Context Γ :

 Γ : function from variable and constant names to types.

Term t has type τ in context Γ : $\Gamma \vdash t :: \tau$

Examples

$$\Gamma \vdash (\lambda x.\; x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \mathtt{int}] \vdash y :: \mathtt{int}$$

$$[z \leftarrow \mathtt{bool}] \vdash (\lambda y.\ y)\ z :: \mathtt{bool}$$

$$[] \vdash \lambda f \ x. \ f \ x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta$$

A term t is **well typed** or **type correct** if there are Γ and τ such that $\Gamma \vdash t :: \tau$

Slide 9

Type Checking Rules

Variables:

$$\overline{\Gamma \vdash x :: \Gamma(x)}$$

Application:

$$\frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau_1 \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau_1}$$

Abstraction:

$$\frac{\Gamma[x \leftarrow \tau_1] \vdash t :: \tau_2}{\Gamma \vdash (\lambda x. \ t) :: \tau_1 \Rightarrow \tau_2}$$

Slide 10

Example Type Derivation:

Slide 11

More complex Example

 $\begin{array}{c|c} \hline \Gamma \vdash f :: \alpha \Rightarrow (\alpha \Rightarrow \beta) & \overline{\Gamma \vdash x :: \alpha} \\ \hline \hline \Gamma \vdash f x :: \alpha \Rightarrow \beta & \overline{\Gamma \vdash x :: \alpha} \\ \hline \hline \Gamma \vdash f x x :: \beta \\ \hline [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f x x :: \alpha \Rightarrow \beta \\ \hline [] \vdash \lambda f x. \ f x x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta \end{array}$

 $\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$

A term can have more than one type.

Example: $[] \vdash \lambda x. \ x :: \texttt{bool} \Rightarrow \texttt{bool}$ $[] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$

Some types are more general than others:

 $\tau \lesssim \sigma$ if there is a substitution S such that $\tau = S(\sigma)$

Examples:

 $\mathtt{int} \Rightarrow \mathtt{bool} \quad \lesssim \quad \alpha \Rightarrow \beta \quad \lesssim \quad \beta \Rightarrow \alpha \quad \not\lesssim \quad \alpha \Rightarrow \alpha$

Slide 13

Most general Types

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \implies \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

- \Rightarrow type checking: checking if $\Gamma \vdash t :: \tau$ for given Γ and τ
- \rightarrow type inference: computing Γ and τ such that $\Gamma \vdash t :: \tau$

Type checking and type inference on λ^{\rightarrow} are decidable.

Slide 14

What about β reduction?

Definition of $\boldsymbol{\beta}$ reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: $\Gamma \vdash s :: \tau \land s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t :: \tau$

This property is called subject reduction

Slide 15

What about termination?

 β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)

 \Rightarrow =_{\beta} is decidable

To decide if $s =_{\beta} t$, reduce s and t to normal form (always exists, because \longrightarrow_{β} terminates), and compare result.

 $\rightarrow =_{\alpha\beta\eta}$ is decidable

This is why Isabelle can automatically reduce each term to $\beta\eta$ normal form.

What does this mean for Expressiveness?

Not all computable functions can be expressed in λ^{\rightarrow} !

How can typed functional languages then be turing complete?

Fact:

Each computable function can be encoded as closed, type correct λ^{\rightarrow} term using $Y::(\tau\Rightarrow\tau)\Rightarrow\tau$ with $Y\;t\longrightarrow_{\beta}t\;(Y\;t)$ as only constant.

- → Y is called fix point operator
- → used for recursion
- → lose decidability (what does $Y(\lambda x.x)$ reduce to?)

Slide 17

Types and Terms in Isabelle

Types: $\tau ::= b \mid {}'\nu \mid {}'\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$

 $b \in \{bool, int, ...\}$ base types

 $\nu \in \{\alpha,\beta,\ldots\}$ type variables

 $K \in \{ \text{set}, \text{list}, \ldots \}$ type constructors

 $C \in \{ \texttt{order}, \texttt{linord}, \ldots \}$ type classes

- → type constructors: construct a new type out of a parameter type. Example: int list
- \Rightarrow type classes: restrict type variables to a class defined by axioms. Example: $\alpha :: order$
- → schematic variables: variables that can be instantiated.

Slide 18

Type Classes

→ similar to Haskell's type classes, but with semantic properties

$$\begin{split} & \textbf{axclass} \text{ order} < \text{ord} \\ & \text{ order_refl: } "x \leq x" \\ & \text{ order_trans: } "[\![x \leq y; y \leq z]\!] \Longrightarrow x \leq z" \end{split}$$

→ theorems can be proved in the abstract

lemma order_less_trans: " $\bigwedge x ::'a :: order$. $[x < y; y < z] \implies x < z$ "

→ can be used for subtyping

axclass linorder < order linorder_linear: " $x \le y \lor y \le x$ "

→ can be instantiated

instance nat :: "{order, linorder}" by ...

Slide 19

Schematic Variables

 $\frac{X \quad Y}{X \wedge Y}$

→ X and Y must be instantiated to apply the rule

But: lemma "x + 0 = 0 + x"

- → x is free
- → convention: lemma must be true for all x
- → during the proof, x must not be instantiated

Solution:

Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Higher Order Unification

Unification:

Find substitution σ on variables for terms s,t such that $\sigma(s)=\sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples

$$\begin{array}{lll} ?X \wedge ?Y & =_{\alpha\beta\eta} & x \wedge x & [?X \leftarrow x, ?Y \leftarrow x] \\ ?P \ x & =_{\alpha\beta\eta} & x \wedge x & [?P \leftarrow \lambda x. \ x \wedge x] \\ P \ (?f \ x) & =_{\alpha\beta\eta} & ?Y \ x & [?f \leftarrow \lambda x. \ x, ?Y \leftarrow P] \end{array}$$

Higher Order: schematic variables can be functions.

Slide 21

Higher Order Unification

- \rightarrow Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- ightharpoonup Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

- → Most cases are well-behaved
- → Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

- \rightarrow is a term in β normal form where
- \rightarrow each occurrence of a schematic variable is of the from $?f\ t_1\ \dots\ t_n$
- ightharpoonup and the $t_1 \ \dots \ t_n$ are η -convertible into n distinct bound variables

Slide 22

We have learned so far...

- \rightarrow Simply typed lambda calculus: λ^{\rightarrow}
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- ightharpoonup β -reduction in λ^{\rightarrow} satisfies subject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates
- → Types and terms in Isabelle

Slide 23

Exercises

- \rightarrow Construct a type derivation tree for the term $\lambda x \ y \ z. \ z \ x \ (y \ x)$
- \rightarrow Find a unifier (substitution) such that $\lambda x \ y \ z$. ? $F \ y \ z = \lambda x \ y \ z$. $z \ (?G \ x \ y)$