

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

Exercises from last time

- ightharpoonup Construct a type derivation tree for the term $\lambda x\ y\ z.\ z\ x\ (y\ x)$
- \rightarrow Find a unifier (substitution) such that $\lambda x \ y \ z$. ? $F \ y \ z = \lambda x \ y \ z$. $z \ (?G \ x \ y)$

Content

	Rough timeline
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[2,3,4 ^a]
Higher Order Logic	$[5,6^b,7]$
Term rewriting	[8,9,10 ^c]
→ Proof & Specification Techniques	
• Isar	$[11,12^d]$
 Inductively defined sets, rule induction 	[13 ^e ,15]
 Datatypes, recursion, induction 	[16,17 ^f ,18,19]
 Calculational reasoning, mathematics style proofs 	[20]
 Hoare logic, proofs about programs 	[21 ^g ,22,23]

 $[^]a$ a1 out; b a1 due; c a2 out; d a2 due; e session break; f a3 out; g a3 due

PREVIEW: PROOFS IN ISABELLE

Proofs in Isabelle

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
...
done
```

→ Sequential application of methods until all **subgoals** are solved.

The Proof State

$$\mathbf{1.} \bigwedge x_1 \dots x_p . \llbracket A_1; \dots; A_n \rrbracket \Longrightarrow B$$

2.
$$\bigwedge y_1 \dots y_q . \llbracket C_1; \dots; C_m \rrbracket \Longrightarrow D$$

 $x_1 \dots x_p$ Parameters

 $A_1 \dots A_n$ Local assumptions

B Actual (sub)goal

Isabelle Theories

Syntax:

```
theory MyTh imports ImpTh_1 \dots ImpTh_n begin (declarations, definitions, theorems, proofs, ...)* end
```

- \rightarrow MyTh: name of theory. Must live in file MyTh. thy
- \rightarrow $Imp Th_i$: name of *imported* theories. Import transitive.

Unless you need something special:

theory MyTh imports Main begin ... end

Natural Deduction Rules

For each connective (\land, \lor, etc) : introduction and elemination rules

apply assumption

proves

1.
$$[B_1; \ldots; B_m] \Longrightarrow C$$

by unifying C with one of the B_i

There may be more than one matching B_i and multiple unifiers.

Backtracking!

Explicit backtracking command: back

Intro rules

Intro rules decompose formulae to the right of \Longrightarrow .

Intro rule $[A_1; ...; A_n] \Longrightarrow A$ means

 \rightarrow To prove A it suffices to show $A_1 \dots A_n$

Applying rule $[A_1; ...; A_n] \Longrightarrow A$ to subgoal C:

- \rightarrow unify A and C
- \rightarrow replace C with n new subgoals $A_1 \dots A_n$

Elim rules

Elim rules decompose formulae on the left of \Longrightarrow .

Elim rule
$$[A_1; ...; A_n] \Longrightarrow A$$
 means

 \rightarrow If I know A_1 and want to prove A it suffices to show $A_2 \dots A_n$

Applying rule $[A_1; ...; A_n] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption

DEMO

More Proof Rules

Iff, Negation, True and False

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \text{ iffl}$$

$$\begin{array}{c|c} A \Longrightarrow B & B \Longrightarrow A \\ \hline A = B & \end{array} \text{iffl} \qquad \begin{array}{c|c} A = B & \llbracket A \longrightarrow B; B \longrightarrow A \rrbracket \Longrightarrow C \\ \hline C & \end{array} \text{iffE}$$

$$\frac{A=B}{A\Longrightarrow B}$$
 iffD1

$$\frac{A=B}{B \Longrightarrow A} \text{ iffD2}$$

$$\frac{A \Longrightarrow False}{\neg A}$$
 notl

$$\frac{\neg A \quad A}{P}$$
 notE

$$\frac{False}{P}$$
 FalseE

Equality

$$\frac{s=t}{t=t}$$
 refl $\frac{s=t}{t=s}$ sym $\frac{r=s}{r=t}$ trans

$$\frac{s=t \quad P \ s}{P \ t}$$
 subst

Rarely needed explicitly — used implicitly by term rewriting

Classical

$$\overline{P = True \lor P = False}$$
 True-False

$$\overline{P \vee \neg P}$$
 excluded-middle

$$\frac{\neg A \Longrightarrow False}{A}$$
 ccontr $\frac{\neg A \Longrightarrow A}{A}$ classical

- → excluded-middle, ccontr and classical not derivable from the other rules.
- → if we include True-False, they are derivable

They make the logic "classical", "non-constructive"

Cases

$$\overline{P \vee \neg P}$$
 excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case_tac term)

Safe and not so safe

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

$$\frac{A}{A \wedge B}$$
 conjl

Unsafe rules can turn a provable goal into an unprovable one

disjl1, disjl2, impE, iffD1, iffD2, notE

$$\frac{A}{A \vee B}$$
 disjl1

Apply safe rules before unsafe ones

DEMO

What we have learned so far...

- \rightarrow natural deduction rules for \land , \lor , \longrightarrow , \neg , iff...
- → proof by assumption, by intro rule, elim rule
- → safe and unsafe rules

Exercises

- → Redo the demo alone + exercises
- → Assignement 1 is out today!
- → Reminder: DO NOT CHEAT
 - Assignments and exams are take-home. This does NOT mean you can work in groups. Each submission is personal.
 - For more info, see Plagiarism Policy