

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

HOL

Content

		Rough timeline
→	Intro & motivation, getting started	[1]
→	Foundations & Principles	
	 Lambda Calculus, natural deduction 	[2,3,4 ^{<i>a</i>}]
	Higher Order Logic	[5,6 ^b ,7]
	Term rewriting	[8,9,10 ^{<i>c</i>}]
→	Proof & Specification Techniques	
	• Isar	[11,12 ^d]
	 Inductively defined sets, rule induction 	[13 ^e ,15]
	 Datatypes, recursion, induction 	[16,17 ^{<i>f</i>} ,18,19]
	 Calculational reasoning, mathematics style proofs 	[20]
	 Hoare logic, proofs about programs 	[21 ^g ,22,23]

^{*a*}a1 out; ^{*b*}a1 due; ^{*c*}a2 out; ^{*d*}a2 due; ^{*e*}session break; ^{*f*}a3 out; ^{*g*}a3 due

QUANTIFIERS

Scope

- Scope of parameters: whole subgoal
- Scope of \forall, \exists, \ldots : ends with ; or \Longrightarrow

Example:

$$\bigwedge x \ y. \ [\![\ \forall y. \ P \ y \longrightarrow Q \ z \ y; \ Q \ x \ y \]\!] \implies \exists x. \ Q \ x \ y$$

means

$$\bigwedge x \ y. \llbracket (\forall y_1. \ P \ y_1 \longrightarrow Q \ z \ y_1); \ Q \ x \ y \rrbracket \implies (\exists x_1. \ Q \ x_1 \ y)$$

$$\frac{\bigwedge x. P x}{\forall x. P x} \text{ all} \qquad \frac{\forall x. P x}{R} \xrightarrow{P ? x \Longrightarrow R} \text{ allE}$$
$$\frac{P ? x}{\exists x. P x} \text{ exl} \qquad \frac{\exists x. P x}{R} \xrightarrow{\bigwedge x. P x \Longrightarrow R} \text{ exE}$$

- all and exE introduce new parameters $(\bigwedge x)$.
- **allE** and **exl** introduce new unknowns (?x).

apply (rule_tac x = "term" in rule)

Like **rule**, but ?x in *rule* is instantiated by *term* before application.

Similar: erule_tac

$$x$$
 is in *rule*, not in goal

1. $\forall x. \exists y. x = y$ **apply** (rule all) **1.** $\bigwedge x$. $\exists y$. x = yexploration best practice **apply** (rule_tac x = "x" in exl) apply (rule exl) 1. $\bigwedge x. x = x$ 1. $\bigwedge x. x = ?y x$ apply (rule refl) apply (rule refl) $?y \mapsto \lambda u.u$

simpler & clearer

shorter & trickier

1. $\exists y. \forall x. x = y$ apply (rule_tac x = ??? in exl)apply (rule exl)1. $\forall x. x = ?y$ apply (rule alll)1. $\land x. x = ?y$ apply (rule refl) $?y \mapsto x$ yields $\land x'.x' = x$

Principle:

 $f x_1 \dots x_n$ can only be replaced by term tif $params(t) \subseteq x_1, \dots, x_n$ Safe and Unsafe Rules

Safe allI, exE

Unsafe allE, exl

Create parameters first, unknowns later

DEMO: QUANTIFIER PROOFS

Parameter names are chosen by Isabelle

1. $\forall x. \exists y. x = y$

apply (rule alll) 1. $\bigwedge x$. $\exists y$. x = y

apply (rule_tac x = "x" in exl)

Brittle!

1.
$$\forall x. \exists y. x = y$$

apply (rule alll) 1. $\bigwedge x. \exists y. x = y$

apply (rename_tac N)

1. $\bigwedge N$. $\exists y$. N = y

apply (rule_tac x = "N" in exl)

In general: (rename_tac $x_1 \dots x_n$) renames the rightmost (inner) n parameters to $x_1 \dots x_n$

apply (frule < *rule* >)

Rule:	$\llbracket A_1; \ldots; A_m \rrbracket \Longrightarrow A$
Subgoal:	1. $\llbracket B_1; \ldots; B_n \rrbracket \Longrightarrow C$
Substitution:	$\sigma(\underline{B_i}) \equiv \sigma(A_1)$
New subgoals:	1. $\sigma(\llbracket B_1; \ldots; B_n \rrbracket \Longrightarrow A_2)$
	÷
	m-1. $\sigma(\llbracket B_1; \ldots; B_n \rrbracket \Longrightarrow A_m)$
	$m. \ \sigma(\llbracket B_1; \ldots; B_n; A \rrbracket \Longrightarrow C)$

Like frule but also deletes B_i : apply (drule < rule >)

Examples for Forward Rules

$$\frac{P \wedge Q}{P} \text{ conjunct1} \qquad \frac{P \wedge Q}{Q} \text{ conjunct2}$$

$$\frac{P \longrightarrow Q \quad P}{Q} \text{ mp}$$

$$\frac{\forall x. P x}{P ? x}$$
 spec

$$r \left[\mathsf{OF} \; r_1 \dots r_n \right]$$

Prove assumption 1 of theorem r with theorem r_1 , and assumption 2 with theorem r_2 , and ...

Rule r $\llbracket A_1; \ldots; A_m \rrbracket \Longrightarrow A$ Rule r_1 $\llbracket B_1; \ldots; B_n \rrbracket \Longrightarrow B$ Substitution $\sigma(B) \equiv \sigma(A_1)$ r [OF r_1] $\sigma(\llbracket B_1; \ldots; B_n; A_2; \ldots; A_m \rrbracket \Longrightarrow A)$

 r_1 [THEN r_2] means r_2 [OF r_1]

DEMO: FORWARD PROOFS

(David Hilbert, 1862-1943)

 $\varepsilon x. Px$ is a value that satisfies P (if such a value exists)

 ε also known as **description operator**. In Isabelle the ε -operator is written SOME x. P x

$$\frac{P ? x}{P (\mathsf{SOME} x. P x)} \mathsf{ somel}$$

 ε implies Axiom of Choice:

 $\forall x. \exists y. Q \ x \ y \Longrightarrow \exists f. \forall x. Q \ x \ (f \ x)$

Existential and universal quantification can be defined with ε .

Isabelle also knows the definite description operator **THE** (aka ι):

$$\overline{(\mathsf{THE}\ x.\ x=a)=a}$$
 the_eq_trivial

More Proof Methods:

apply (intro <intro-rules>)</intro-rules>	repeatedly applies intro rules
apply (elim <elim-rules>)</elim-rules>	repeatedly applies elim rules
apply clarify	applies all safe rules that do not split the goal
apply safe	applies all safe rules
apply blast	an automatic tableaux prover (works well on predicate logic)
apply fast	another automatic search tactic

EPSILON AND AUTOMATION DEMO

We have learned so far...

- ➔ Proof rules for predicate calculus
- → Safe and unsafe rules
- ➔ Forward Proof
- → The Epsilon Operator
- → Some automation

 \clubsuit We said that $\mathcal E$ implies the Axiom of Choice:

 $\forall x. \exists y. Q \ x \ y \Longrightarrow \exists f. \forall x. Q \ x \ (f \ x)$

→ Prove the axiom of choice as a lemma, using only the introduction and elimination rules for ∀ and ∃, namely allI, exI, allE, exE, and the introduction rule for E, someI, using only the proof methods rule, rule_tac, erule, erule_tac and assumption.