

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

HOL

Slide 1

Content	
Content	NICTA
	Rough timeline
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
Lambda Calculus, natural deduction	[2,3,4a]
Higher Order Logic	[5,6 ^b ,7]
Term rewriting	[8,9,10°]
→ Proof & Specification Techniques	
• Isar	[11,12 ^d]
 Inductively defined sets, rule induction 	[13 ^e ,15]
 Datatypes, recursion, induction 	[16,17 ^f ,18,19]
 Calculational reasoning, mathematics style proofs 	[20]
 Hoare logic, proofs about programs 	[21 ^g ,22,23]

 a a1 out; b a1 due; c a2 out; d a2 due; e session break; f a3 out; g a3 due

Slide 2

QUANTIFIERS

Slide 3

Scope

• Scope of parameters: whole subgoal

• Scope of \forall , \exists , . . .: ends with ; or \Longrightarrow

Example:

$$\bigwedge x \; y. \; \llbracket \; \forall y. \; P \; y \longrightarrow Q \; z \; y; \; \; Q \; x \; y \; \rrbracket \implies \exists x. \; Q \; x \; y$$

means

 $\bigwedge x \ y. \ \llbracket \ (\forall y_1. \ P \ y_1 \longrightarrow Q \ z \ y_1); \ Q \ x \ y \ \rrbracket \implies (\exists x_1. \ Q \ x_1 \ y)$

Slide 4

2

Natural deduction for quantifiers

$$\frac{\bigwedge x.\ P\ x}{\forall x.\ P\ x} \ \text{all} \qquad \frac{\forall x.\ P\ x}{R} \ \frac{P\ ?x \Longrightarrow R}{R} \ \text{allE}$$

$$\frac{P~?x}{\exists x.~P~x}~\text{exl} \qquad \frac{\exists x.~P~x~~\bigwedge x.~P~x \Longrightarrow R}{R}~\text{exE}$$

- all and exE introduce new parameters $(\bigwedge x)$.
- allE and ext introduce new unknowns (?x).

Slide 5

Instantiating Rules

apply (rule_tac x = "term" in rule)

Like **rule**, but ?x in rule is instantiated by term before application.

Similar: erule_tac

 $\cline{1}$ x is in rule, not in goal

Slide 6

Two Successful Proofs

1. $\forall x. \exists y. \ x = y$

apply (rule allI)

1. $\bigwedge x$. $\exists y$. x = y

best practice

exploration

apply (rule_tac x = "x" in exl)

apply (rule exl)

1. $\bigwedge x$. x = x

1. $\bigwedge x$. x = ?y x

apply (rule refl)

apply (rule refl) $?y \mapsto \lambda u.u$

simpler & clearer

shorter & trickier

Slide 7

Two Unsuccessful Proofs

1. $\exists y. \forall x. \ x = y$

apply (rule_tac x = ??? in exl)

apply (rule exl) 1. $\forall x. \ x = ?y$

apply (rule alli)

1. $\bigwedge x. \ x = ?y$

apply (rule refl)

 $?y \mapsto x \text{ yields } \bigwedge x'.x' = x$

Principle:

 $f(x_1, \dots, x_n)$ can only be replaced by term $f(x_1, \dots, x_n)$

if $params(t) \subseteq x_1, \ldots, x_n$

Unsafe allE, exl

Create parameters first, unknowns later

Slide 9

DEMO: QUANTIFIER PROOFS

Slide 10

Parameter names

Parameter names are chosen by Isabelle

```
1. \forall x. \exists y. \ x=y apply (rule allI)
1. \bigwedge x. \exists y. \ x=y apply (rule_tac x = "x" in exl)
```

Brittle!

Slide 11

Renaming parameters


```
1. \forall x. \ \exists y. \ x=y apply (rule allI)
1. \bigwedge x. \ \exists y. \ x=y apply (rename_tac N)
1. \bigwedge N. \ \exists y. \ N=y apply (rule_tac x = "N" in exI)
```

In general:

(rename_tac $x_1 \ldots x_n$) renames the rightmost (inner) n parameters to $x_1 \ldots x_n$

Forward Proof: frule and drule

apply (frule < rule >)

Substitution:
$$\sigma(B_i) \equiv \sigma(A_1)$$

New subgoals: 1.
$$\sigma(\llbracket B_1;\ldots;B_n\rrbracket\Longrightarrow A_2)$$
 :

m-1. $\sigma(\llbracket B_1; \dots; B_n \rrbracket) \Longrightarrow A_m$ m. $\sigma(\llbracket B_1; \dots; B_n; A \rrbracket) \Longrightarrow C$

Like **frule** but also deletes B_i : **apply** (drule < rule >)

Slide 13

Examples for Forward Rules

$$\frac{P \wedge Q}{P}$$
 conjunct1 $\frac{P \wedge Q}{Q}$ conjunct2

$$\frac{P \longrightarrow Q \quad P}{Q} \ \, \mathrm{mp}$$

$$\frac{\forall x.\ P\ x}{P\ ?x}$$
 spec

Slide 14

Forward Proof: OF

$$r$$
 [OF $r_1 \dots r_n$]

Prove assumption 1 of theorem r with theorem $r_1,$ and assumption 2 with theorem $r_2,$ and \dots

Rule
$$r$$
 $[\![A_1; \ldots; A_m]\!] \Longrightarrow A$
Rule r_1 $[\![B_1; \ldots; B_n]\!] \Longrightarrow B$

Substitution
$$\sigma(B) \equiv \sigma(A_1)$$

$$r \ [\mathsf{OF} \ r_1] \qquad \sigma(\llbracket B_1; \ldots; B_n; A_2; \ldots; A_m \rrbracket) \Longrightarrow A)$$

Slide 15

Forward proofs: THEN

 r_1 [THEN r_2] means r_2 [OF r_1]

DEMO: FORWARD PROOFS

Slide 17

Hilbert's Epsilon Operator

(David Hilbert, 1862-1943)

 εx . Px is a value that satisfies P (if such a value exists)

 ε also known as description operator. In Isabelle the $\varepsilon\text{-}\text{operator}$ is written SOME x. P x

$$\frac{P \, ?x}{P \, (\mathsf{SOME} \, x. \, P \, x)} \, \, \mathsf{somel}$$

Slide 18

More Epsilon

arepsilon implies Axiom of Choice:

$$\forall x. \exists y. Q \ x \ y \Longrightarrow \exists f. \ \forall x. \ Q \ x \ (f \ x)$$

Existential and universal quantification can be defined with ε .

Isabelle also knows the definite description operator **THE** (aka ι):

 $\overline{(\mathsf{THE}\; x.\; x=a)=a}\;\;\mathsf{the_eq_trivial}$

Slide 19

Some Automation

More Proof Methods:

apply (intro <intro-rules>) repeatedly applies intro rules
apply (elim <elim-rules>) repeatedly applies elim rules

apply clarify applies all safe rules

that do not split the goal

apply safe applies all safe rules

apply blast an automatic tableaux prover

(works well on predicate logic)

apply fast another automatic search tactic

EPSILON AND AUTOMATION DEMO

Slide 21

We have learned so far...

- → Proof rules for predicate calculus
- → Safe and unsafe rules
- → Forward Proof
- → The Epsilon Operator
- → Some automation

Slide 22

11

Exercises

ightharpoonup We said that arepsilon implies the Axiom of Choice:

 $\forall x. \exists y. Q \ x \ y \Longrightarrow \exists f. \forall x. Q \ x \ (f \ x)$

→ Prove the axiom of choice as a lemma, using only the introduction and elimination rules for ∀ and ∃, namely allI, exI, allE, exE, and the introduction rule for E, someI, using only the proof methods rule, rule_tac, erule, erule_tac and assumption.

Slide 23

12