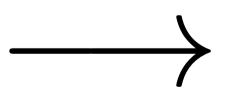


COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray



Content

		Rough timeline
→	Intro & motivation, getting started	[1]
→	Foundations & Principles	
	 Lambda Calculus, natural deduction 	[2,3,4 ^{<i>a</i>}]
	Higher Order Logic	[5,6 ^b ,7]
	Term rewriting	[8,9,10 ^{<i>c</i>}]
→	Proof & Specification Techniques	
	• Isar	[11,12 ^d]
	 Inductively defined sets, rule induction 	[13 ^e ,15]
	 Datatypes, recursion, induction 	[16,17 ^{<i>f</i>} ,18,19]
	 Calculational reasoning, mathematics style proofs 	[20]
	 Hoare logic, proofs about programs 	[21 ^g ,22,23]

^{*a*}a1 out; ^{*b*}a1 due; ^{*c*}a2 out; ^{*d*}a2 due; ^{*e*}session break; ^{*f*}a3 out; ^{*g*}a3 due

Last Time on HOL

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules
- ➔ More automation

→ Axioms:

Expample: **axioms** refl: "t = t"

Do not use. Evil. Can make your logic inconsistent.

→ Definitions:

Example: **definition** inj **where** "inj $f \equiv \forall x \ y$. $f \ x = f \ y \longrightarrow x = y$ " Introduces a new lemma called inj_def.

→ Proofs:

Example: **lemma** "inj $(\lambda x. x + 1)$ "

The harder, but safe choice.

The Three Basic Ways of Introducing Types

→ typedecl: by name only

Example:typedecl namesIntroduces new type names without any further assumptions

→ types: by abbreviation

Example:types α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ "Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ Type abbreviations are immediately expanded internally

→ typedef: by definiton as a set

Example: **typedef** new_type = "{some set}" <proof> Introduces a new type as a subset of an existing type. The proof shows that the set on the rhs in non-empty. More on **typedef** in later lectures.

TERM REWRITING

Given a set of equations

 $l_1 = r_1$ $l_2 = r_2$ \vdots $l_n = r_n$

does equation l = r hold?

Applications in:

- → Mathematics (algebra, group theory, etc)
- → Functional Programming (model of execution)
- → **Theorem Proving** (dealing with equations, simplifying statements)

use equations as reduction rules

$$l_1 \longrightarrow r_1$$
$$l_2 \longrightarrow r_2$$
$$\vdots$$
$$l_n \longrightarrow r_n$$

decide l = r by deciding $l \stackrel{*}{\longleftrightarrow} r$

Arrow Cheat Sheet

 $\stackrel{0}{\longrightarrow} = \{(x,y)|x=y\}$ identity $\xrightarrow{n+1} = \xrightarrow{n} \circ \longrightarrow$ n+1 fold composition $\xrightarrow{+}$ = $\bigcup_{i>0} \xrightarrow{i}$ transitive closure $\stackrel{*}{\longrightarrow} = \stackrel{+}{\longrightarrow} \sqcup \stackrel{0}{\longrightarrow}$ reflexive transitive closure $\stackrel{=}{\longrightarrow} = \longrightarrow \bigcup \stackrel{0}{\longrightarrow}$ reflexive closure $\xrightarrow{-1} = \{(y,x) | x \longrightarrow y\}$ inverse $\leftarrow = \xrightarrow{-1}$ inverse $\longleftrightarrow \quad = \quad \longleftarrow \quad \bigcup \longrightarrow$ symmetric closure $\stackrel{+}{\longleftrightarrow} \quad = \quad \bigcup_{i>0} \stackrel{i}{\longleftrightarrow}$ transitive symmetric closure $\stackrel{*}{\longleftrightarrow} = \stackrel{+}{\longleftrightarrow} \cup \stackrel{0}{\longleftrightarrow}$ reflexive transitive symmetric closure

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok. If $l \xleftarrow{*} r$, will there always be a suitable *n*? **No**!

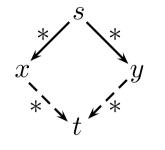
Example:

Rules:
$$f x \longrightarrow a$$
, $g x \longrightarrow b$, $f (g x) \longrightarrow b$
 $f x \stackrel{*}{\longleftrightarrow} g x$ because $f x \longrightarrow a \longleftarrow f (g x) \longrightarrow b \longleftarrow g x$
But: $f x \longrightarrow a$ and $g x \longrightarrow b$ and a, b in normal form

Works only for systems with **Church-Rosser** property: $l \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n. \ l \stackrel{*}{\longrightarrow} n \land r \stackrel{*}{\longrightarrow} n$

Fact: \longrightarrow is Church-Rosser iff it is confluent.

Confluence

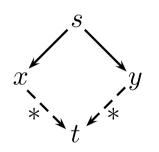


Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence



Fact: local confluence and termination \implies confluence

- \longrightarrow is **terminating** if there are no infinite reduction chains
- \longrightarrow is **normalizing** if each element has a normal form
- \longrightarrow is convergent if it is terminating and confluent

Example:

- \longrightarrow_{β} in λ is not terminating, but confluent
- \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when

there is a well founded order < on terms for which s < t whenever $t \longrightarrow s$ (well founded = no infinite decreasing chains $a_1 > a_2 > \ldots$)

Example:
$$f(g x) \longrightarrow g x, g(f x) \longrightarrow f x$$

This system always terminates. Reduction order:

 $s <_r t$ iff size(s) < size(t) with

size(s) = number of function symbols in s

1 Both rules always decrease size by 1 when applied to any term t

 ${\mathbb O}_{-r}$ is well founded, because < is well founded on ${\mathbb N}$

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term t.

Show for each rule $l_i = r_i$, that $r_i < l_i$.

Example:

 $g \ x <_r f \ (g \ x)$ and $f \ x < g \ (f \ x)$

Requires t to become smaller whenever any subterm of t is made smaller.

Formally:

Requires < to be **monotonic** with respect to the structure of terms:

 $s < t \longrightarrow u[s] < u[t].$

True for most orders that don't treat certain parts of terms as special cases.

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

→ Remove implications:

imp: $(A \longrightarrow B) = (\neg A \lor B)$

→ Push \neg s down past other operators:

notnot: $(\neg \neg P) = P$

notand: $(\neg (A \land B)) = (\neg A \lor \neg B)$

notor: $(\neg (A \lor B)) = (\neg A \land \neg B)$

We show that the rewrite system defined by these rules is terminating.

Order on Terms

Each time one of our rules is applied, either:

- \rightarrow an implication is removed, or
- \rightarrow something that is not a \neg is hoisted upwards in the term.

This suggests a 2-part order, $<_r$: $s <_r t$ iff:

- → num_imps s < num_imps t, or
- → num_imps s = num_imps $t \land$ osize s < osize t.

Let:

- → $s <_i t \equiv \text{num_imps } s < \text{num_imps } t$ and
- → $s <_n t \equiv$ osize s <osize t

Then $<_i$ and $<_n$ are both well-founded orders (since both functions return nats).

 $<_r$ is the lexicographic order over $<_i$ and $<_n$. $<_r$ is well-founded since $<_i$ and $<_n$ are both well-founded.

imp clearly decreases num_imps.

osize adds up all non- \neg operators and variables/constants, weights each one according to its depth within the term.

 $\begin{array}{ll} \operatorname{osize}' c & \operatorname{acm} = 2^{\operatorname{acm}} \\ \operatorname{osize}' (\neg P) & \operatorname{acm} = \operatorname{osize}' P \left(\operatorname{acm} + 1\right) \\ \operatorname{osize}' (P \land Q) & \operatorname{acm} = 2^{\operatorname{acm}} + \left(\operatorname{osize}' P \left(\operatorname{acm} + 1\right)\right) + \left(\operatorname{osize}' Q \left(\operatorname{acm} + 1\right)\right) \\ \operatorname{osize}' (P \lor Q) & \operatorname{acm} = 2^{\operatorname{acm}} + \left(\operatorname{osize}' P \left(\operatorname{acm} + 1\right)\right) + \left(\operatorname{osize}' Q \left(\operatorname{acm} + 1\right)\right) \\ \operatorname{osize}' (P \longrightarrow Q) \operatorname{acm} = 2^{\operatorname{acm}} + \left(\operatorname{osize}' P \left(\operatorname{acm} + 1\right)\right) + \left(\operatorname{osize}' Q \left(\operatorname{acm} + 1\right)\right) \\ \operatorname{osize}' P & = \operatorname{osize}' P 0 \end{array}$

The other rules decrease the depth of the things osize counts, so decrease osize.

Term rewriting engine in Isabelle is called **Simplifier**

apply simp

- → uses simplification rules
- → (almost) blindly from left to right
- → until no rule is applicable.

termination:	not guaranteed
	(may loop)

confluence: not guaranteed (result may depend on which rule is used first)

- → Equations turned into simplification rules with [simp] attribute
- → Adding/deleting equations locally: apply (simp add: <rules>) and apply (simp del: <rules>)
- → Using only the specified set of equations: apply (simp only: <rules>)

Dемо

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

→ Show, via a pen-and-paper proof, that the osize function is monotonic with respect to the structure of terms from that example.