$\qquad$

## COMP 4161

NICTA Advanced Course

## Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray


## Slide 1

| Slide 1 |  |
| :---: | :---: |
| Content |  |
|  | Rough timeline |
| $\rightarrow$ Intro \& motivation, getting started | [1] |
| $\rightarrow$ Foundations \& Principles |  |
| - Lambda Calculus, natural deduction | [2,3,4 ${ }^{\text {a }}$ ] |
| - Higher Order Logic | [5,6 ${ }^{\text {b }}$, $]$ |
| - Term rewriting | [8,9,10 ${ }^{\text {c }}$ |
| $\rightarrow$ Proof \& Specification Techniques |  |
| - Isar | $\left[11,12^{d}\right]$ |
| - Inductively defined sets, rule induction | [13e, 15$]$ |
| - Datatypes, recursion, induction | [16,17f, 18,19$]$ |
| - Calculational reasoning, mathematics style proofs | [20] |
| - Hoare logic, proofs about programs | [ ${ }^{\left.11^{9}, 22,23\right]}$ |

## Last Time on HOL

NICTA

## $\rightarrow$ Defining HOL

$\rightarrow$ Higher Order Abstract Syntax
$\rightarrow$ Deriving proof rules
$\rightarrow$ More automation

The Three Basic Ways of Introducing Theorems $\qquad$ NICTA

## $\rightarrow$ Axioms:

Expample: axioms refl: " $t=t$ "
Do not use. Evil. Can make your logic inconsistent.

## $\rightarrow$ Definitions:

Example: definition inj where "inj $f \equiv \forall x y$. $f x=f y \longrightarrow x=y$ " Introduces a new lemma called inj_def.
$\rightarrow$ Proofs:
Example: lemma "inj $(\lambda x \cdot x+1)$ "
The harder, but safe choice

The Three Basic Ways of Introducing Types $\qquad$ NICTA
$\rightarrow$ typedecl: by name only
Example: typedecl names
Introduces new type names without any further assumptions
$\rightarrow$ types: by abbreviation
Example
types $\alpha$ rel $=" ~ \alpha \Rightarrow \alpha \Rightarrow$ bool"
Introduces abbreviation rel for existing type $\alpha \Rightarrow \alpha \Rightarrow$ bool Type abbreviations are immediately expanded internally
$\rightarrow$ typedef: by definiton as a set

## Example:

typedef new_type = "\{some set\}" <proof> Introduces a new type as a subset of an existing type.
The proof shows that the set on the rhs in non-empty
More on typedef in later lectures.

NICTA

## Given a set of equations

$$
\begin{aligned}
l_{1} & =r_{1} \\
l_{2} & =r_{2}
\end{aligned}
$$

$l_{n}=r_{n}$
does equation $l=r$ hold?

## Applications in:

$\rightarrow$ Mathematics (algebra, group theory, etc)
$\rightarrow$ Functional Programming (model of execution)
$\rightarrow$ Theorem Proving (dealing with equations, simplifying statements)

Slide 7

NICTA
use equations as reduction rules
$l_{1} \longrightarrow r_{1}$
$l_{2} \longrightarrow r_{2}$
$l_{n} \longrightarrow r_{n}$
decide $l=r$ by deciding $l \stackrel{*}{\longleftrightarrow} r$

| Arrow Cheat Sheet |  |  |  |
| :---: | :---: | :---: | :---: |
| $\xrightarrow{0}$ |  | $\{(x, y) \mid x=y\}$ | identity |
| $\xrightarrow{n+1}$ |  | $\xrightarrow{n} 0 \longrightarrow$ | $\mathrm{n}+1$ fold composition |
| $\xrightarrow{+}$ |  | $\bigcup_{i>0} \xrightarrow{i}$ | transitive closure |
| $\stackrel{ }{*}$ |  | $\xrightarrow{+} \cup \xrightarrow{0}$ | reflexive transitive closure |
| $\stackrel{ }{\square}$ |  | $\longrightarrow \cup \xrightarrow{0}$ | reflexive closure |
| $\xrightarrow{-1}$ |  | $\{(y, x) \mid x \longrightarrow y\}$ | inverse |
| - |  | $\xrightarrow{-1}$ | inverse |
| $\longleftrightarrow$ |  | $\longleftarrow \cup \longrightarrow$ | symmetric closure |
|  |  | $\bigcup_{i>0} \stackrel{i}{\longleftrightarrow}$ | transitive symmetric closure |
| $\longleftarrow$ |  | $\stackrel{+}{\longleftrightarrow} \cup \stackrel{0}{\longleftrightarrow}$ | reflexive transitive symmetric closure |

## Slide 9

How to Decide $l \stackrel{*}{\longleftrightarrow} r$
NICTA

## Same idea as for $\beta$ : look for $n$ such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

## Does this always work?

If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \stackrel{*}{\longleftrightarrow} r$. Ok
If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable $n$ ? No!

## Example: <br> Rules: $\quad f x \longrightarrow a, \quad g x \longrightarrow b, \quad f(g x) \longrightarrow b$ <br> $f x \stackrel{*}{\longleftrightarrow} g x$ because $f x \longrightarrow a \longleftarrow f(g x) \longrightarrow b \longleftarrow g x$ <br> But: $\quad f x \longrightarrow a$ and $g x \longrightarrow b$ and $a, b$ in normal form

Works only for systems with Church-Rosser property:

$$
l \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n . l \xrightarrow{*} n \wedge r \xrightarrow{*} n
$$

Fact: $\longrightarrow$ is Church-Rosser iff it is confluent

Problem:
is a given set of reduction rules confluent? undecidable

## Local Confluence



Fact: local confluence and termination $\Longrightarrow$ confluence

Slide 11

Termination
$\longrightarrow$ is terminating if there are no infinite reduction chains
$\longrightarrow$ is normalizing if each element has a normal form
$\longrightarrow$ is convergent if it is terminating and confluent

## Example:

$\longrightarrow_{\beta}$ in $\lambda$ is not terminating, but confluent
$\longrightarrow \beta$ in $\lambda^{\rightarrow}$ is terminating and confluent, i.e. convergent
Problem: is a given set of reduction rules terminating?

## undecidable

Slide 12

NICTA
Basic idea: when each rule application makes terms simpler in some way.

## More formally: $\longrightarrow$ is terminating when

there is a well founded order $<$ on terms for which $s<t$ whenever $t \longrightarrow s$ (well founded = no infinite decreasing chains $a_{1}>a_{2}>\ldots$ )
Example: $f(g x) \longrightarrow g x, g(f x) \longrightarrow f x$
This system always terminates. Reduction order:
$s<_{r} t$ iff $\operatorname{size}(s)<\operatorname{size}(t)$ with
size $(s)=$ number of function symbols in $s$
(1) Both rules always decrease size by 1 when applied to any term $t$
(2) $<_{r}$ is well founded, because $<$ is well founded on $\mathbb{N}$

## Slide 13

## Termination in Practice

 NICTAIn practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term $t$.

Show for each rule $l_{i}=r_{i}$, that $r_{i}<l_{i}$.

## Example:

$g x<_{r} f(g x)$ and $f x<g(f x)$
Requires $t$ to become smaller whenever any subterm of $t$ is made smaller.

## Formally:

Requires $<$ to be monotonic with respect to the structure of terms:
$s<t \longrightarrow u[s]<u[t]$.
True for most orders that don't treat certain parts of terms as special cases.

Example Termination Proof
NICTA
Problem: Rewrite formulae containing $\neg, \wedge, \vee$ and $\longrightarrow$, so that they don't contain any implications and $\neg$ is applied only to variables and constants.

## Rewrite Rules:

$\rightarrow$ Remove implications:
imp: $(A \longrightarrow B)=(\neg A \vee B)$
$\rightarrow$ Push $\neg \mathrm{S}$ down past other operators:

$$
\begin{array}{ll}
\text { notnot: } & (\neg \neg P)=P \\
\text { notand: } & (\neg(A \wedge B))=(\neg A \vee \neg B) \\
\text { notor: } & (\neg(A \vee B))=(\neg A \wedge \neg B)
\end{array}
$$

We show that the rewrite system defined by these rules is terminating

## Slide 15

## Order on Terms

NICTA
Each time one of our rules is applied, either:
$\rightarrow$ an implication is removed, or
$\rightarrow$ something that is not a $\neg$ is hoisted upwards in the term.
This suggests a 2-part order, $<_{r}: s<_{r} t$ iff:
$\rightarrow$ num_imps $s<$ num_imps $t$, or
$\rightarrow$ num_imps $s=$ num_imps $t \wedge$ osize $s<$ osize $t$.
Let:
$\rightarrow s<{ }_{i} t \equiv$ num_imps $s<$ num_imps $t$ and
$\rightarrow s<_{n} t \equiv$ osize $s<$ osize $t$
Then $<_{i}$ and $<_{n}$ are both well-founded orders (since both functions return nats)
$<_{r}$ is the lexicographic order over $<_{i}$ and $<_{n} .<_{r}$ is well-founded since $<_{i}$ and $<_{n}$ are both well-founded.
$\qquad$
NICTA
imp clearly decreases num_imps.
osize adds up all non- - operators and variables/constants, weights each one according to its depth within the term.

| osize ${ }^{\prime}$ c | $\mathrm{acm}=2^{\mathrm{acm}}$ |
| :---: | :---: |
| osize ${ }^{\prime}(\neg P)$ | $\mathrm{acm}=$ osize ${ }^{\prime} P(\mathrm{acm}+1)$ |
| osize' $(P \wedge Q)$ | $\mathrm{acm}=2^{\text {acm }}+\left(\right.$ osize $\left.^{\prime} P(\mathrm{acm}+1)\right)+\left(\right.$ osize' $\left.^{\prime} Q(\mathrm{acm}+1)\right)$ |
| osize' $(P \vee Q)$ | $\mathrm{acm}=2^{\text {acm }}+\left(\right.$ osize' $\left.^{\prime} P(\mathrm{acm}+1)\right)+\left(\right.$ osize' $\left.^{\prime} Q(\mathrm{acm}+1)\right)$ |
| osize' $(P \longrightarrow Q)$ | $\mathrm{acm}=2^{\text {acm }}+($ osize' $P(\mathrm{acm}+1))+\left(\right.$ osize' $\left.^{\prime} Q(\mathrm{acm}+1)\right)$ |
| osize $P$ | $=$ osize' $P 0$ |

The other rules decrease the depth of the things osize counts, so decrease osize.

## Slide 17

Control
$\rightarrow$ Equations turned into simplification rules with [simp] attribute
$\rightarrow$ Adding/deleting equations locally: apply (simp add: <rules>) and apply (simp del: <rules>)
$\rightarrow$ Using only the specified set of equations: apply (simp only: <rules>)

## Slide 19

## Demo

termination: not guaranteed (may loop)
confluence: not guaranteed (result may depend on which rule is used first)

We have seen today...
NICTA

## $\rightarrow$ Equations and Term Rewriting

$\rightarrow$ Confluence and Termination of reduction systems
$\rightarrow$ Term Rewriting in Isabelle

## Slide 21

Exercises
NICTA
$\rightarrow$ Show, via a pen-and-paper proof, that the osize function is monotonic with respect to the structure of terms from that example.

