

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

Content

		Rough timeline
→	Intro & motivation, getting started	[1]
→	Foundations & Principles	
	 Lambda Calculus, natural deduction 	[2,3,4 ^{<i>a</i>}]
	Higher Order Logic	[5,6 ^b ,7]
	Term rewriting	[8,9,10 ^{<i>c</i>}]
→	Proof & Specification Techniques	
	• Isar	[11,12 ^d]
	 Inductively defined sets, rule induction 	[13 ^e ,15]
	 Datatypes, recursion, induction 	[16,17 ^{<i>f</i>} ,18,19]
	 Calculational reasoning, mathematics style proofs 	[20]
	 Hoare logic, proofs about programs 	[21 ^g ,22,23]

^{*a*}a1 out; ^{*b*}a1 due; ^{*c*}a2 out; ^{*d*}a2 due; ^{*e*}session break; ^{*f*}a3 out; ^{*g*}a3 due

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

- → $l \longrightarrow r$ applicable to term t[s]if there is substitution σ such that $\sigma l = s$
- → Result: $t[\sigma r]$
- → Equationally: $t[s] = t[\sigma r]$

Example:

Rule: $0 + n \longrightarrow n$

Term: a + (0 + (b + c))

Substitution: $\sigma = \{n \mapsto b + c\}$

Result: a + (b + c)

Conditional Term Rewriting

NICTA

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

is **applicable** to term t[s] with σ if

- $\rightarrow \sigma l = s$ and
- → $\sigma P_1, \ldots, \sigma P_n$ are provable by rewriting.

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma " $f x = g x \land g x = f x \Longrightarrow f x = 2$ "

simpuse and simplify assumptions(simp (no_asm))ignore assumptions(simp (no_asm_use))simplify, but do not use assumptions(simp (no_asm_simp))use, but do not simplify assumptions

Preprocessing (recursive) for maximal simplification power:

$$\neg A \quad \mapsto \quad A = False$$
$$A \longrightarrow B \quad \mapsto \quad A \Longrightarrow B$$
$$A \land B \quad \mapsto \quad A, B$$
$$\forall x. \ A \ x \quad \mapsto \quad A \ ?x$$
$$A \quad \mapsto \quad A = True$$

Example: $(p \longrightarrow q \land \neg r) \land s$

 $p \Longrightarrow q = True$ $p \Longrightarrow r = False$ s = True

 \mapsto

Dемо

 $P \text{ (if } A \text{ then } s \text{ else } t) = \\ (A \longrightarrow P s) \land (\neg A \longrightarrow P t)$

Automatic

$$P (case e of 0 \Rightarrow a | Suc n \Rightarrow b)$$

=
$$(e = 0 \longrightarrow P a) \land (\forall n. e = Suc n \longrightarrow P b)$$

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \implies hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

 $\textbf{Example:} \hspace{0.2cm} \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$

Read: to simplify $P \longrightarrow Q$

- \rightarrow first simplify *P* to *P'*
- \rightarrow then simplify Q to Q' using P' as assumption
- \rightarrow the result is $P' \longrightarrow Q'$

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj_cong**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

Context for if-then-else:

if_cong: $[\![b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v]\!] \Longrightarrow$ (if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):

if_weak_cong: $b = c \Longrightarrow$ (if b then x else y) = (if c then x else y)

- → declare own congruence rules with [cong] attribute
- → delete with [cong del]

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

For types nat, int etc:

- lemmas **add_ac** sort any sum (+)
- lemmas times_ac sort any product (*)

Example: apply (simp add: add_ac) yields $(b+c) + a \rightsquigarrow \cdots \rightsquigarrow a + (b+c)$

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$ We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$

We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operator Isabelle will order terms correctly

Dемо

Last time: confluence in general is undecidable.But: confluence for terminating systems is decidable!Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f x \longrightarrow a$ (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ Critical pairs:

(1)+(3)
$$\{x \mapsto g z\}$$
 $a \xleftarrow{(1)} f g t \xrightarrow{(3)} b$
(3)+(2) $\{z \mapsto y\}$ $b \xleftarrow{(3)} f g t \xrightarrow{(2)} b$

Completion

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3)
$$\{x \mapsto g z\}$$
 $a \xleftarrow{(1)} f g t \xrightarrow{(3)} b$
shows that $a = b$ (because $a \xleftarrow{*} b$), so we add $a \longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

DEMO: WALDMEISTER

Definitions:

A rule $l \rightarrow r$ is left-linear if no variable occurs twice in l. A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

We have learned today ...

- → Conditional term rewriting
- → Congruence rules
- → AC rules
- → More on confluence