# **O** • NICTA

#### COMP 4161 NICTA Advanced Course

#### Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray



Slide 1

| Oraclast                                                              | •                           |
|-----------------------------------------------------------------------|-----------------------------|
| Content                                                               | NICTA                       |
|                                                                       | Rough timeline              |
| → Intro & motivation, getting started                                 | [1]                         |
| ➔ Foundations & Principles                                            |                             |
| Lambda Calculus, natural deduction                                    | [2,3,4 <sup>a</sup> ]       |
| Higher Order Logic                                                    | [5,6 <sup>b</sup> ,7]       |
| Term rewriting                                                        | [8,9,10 <sup>c</sup> ]      |
| Proof & Specification Techniques                                      |                             |
| • Isar                                                                | [11,12 <sup>d</sup> ]       |
| <ul> <li>Inductively defined sets, rule induction</li> </ul>          | [13 <sup>e</sup> ,15]       |
| <ul> <li>Datatypes, recursion, induction</li> </ul>                   | [16,17 <sup>f</sup> ,18,19] |
| <ul> <li>Calculational reasoning, mathematics style proofs</li> </ul> | [20]                        |
| <ul> <li>Hoare logic, proofs about programs</li> </ul>                | [21 <sup>g</sup> ,22,23]    |

<sup>a</sup>a1 out; <sup>b</sup>a1 due; <sup>c</sup>a2 out; <sup>d</sup>a2 due; <sup>e</sup>session break; <sup>f</sup>a3 out; <sup>g</sup>a3 due

Slide 2

#### Last Time



 $\mathbf{O}$ 

NICTA

- ➔ Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

Slide 3

## Applying a Rewrite Rule $\rightarrow l \longrightarrow r$ applicable to term t[s]if there is substitution $\sigma$ such that $\sigma l = s$

- → Result:  $t[\sigma r]$
- → Equationally:  $t[s] = t[\sigma r]$

#### Example:

Rule:  $0 + n \longrightarrow n$ 

**Term:** a + (0 + (b + c))

Substitution:  $\sigma = \{n \mapsto b + c\}$ 

**Result:** a + (b + c)



Slide 6

#### Case splitting with simp



 $\begin{array}{c} P \ ( \text{if} \ A \ \text{then} \ s \ \text{else} \ t ) \\ = \\ (A \longrightarrow P \ s) \land ( \neg A \longrightarrow P \ t ) \end{array}$ 

Automatic

 $\begin{array}{l} P \; (\mathsf{case} \; e \; \mathsf{of} \; 0 \; \Rightarrow \; a \; | \; \mathsf{Suc} \; n \; \Rightarrow \; b) \\ = \\ (e = 0 \longrightarrow P \; a) \land (\forall n. \; e = \mathsf{Suc} \; n \longrightarrow P \; b) \end{array}$ 

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

#### Slide 9

| Congruence Rules                                                                                                          | <b>O</b> • NICTA |
|---------------------------------------------------------------------------------------------------------------------------|------------------|
| congruence rules are about using context                                                                                  |                  |
| <b>Example</b> : in $P \longrightarrow Q$ we could use $P$ to simplify terms in $Q$                                       |                  |
| For $\Longrightarrow$ hardwired (assumptions used in rewriting)                                                           |                  |
| For other operators expressed with conditional rewriting.                                                                 |                  |
| $\textbf{Example:}  [\![P=P';P' \Longrightarrow Q=Q']\!] \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$ |                  |
| <b>Read</b> : to simplify $P \longrightarrow Q$<br>$\Rightarrow$ first simplify $P$ to $P'$                               |                  |

- → then simplify Q to Q' using P' as assumption
- $\rightarrow$  the result is  $P' \longrightarrow Q'$



#### More Congruence

Sometimes useful, but not used automatically (slowdown): conj\_cong:  $[P = P'; P' \implies Q = Q'] \implies (P \land Q) = (P' \land Q')$  NICTA

Context for if-then-else: **if\_cong**:  $[b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v] \Longrightarrow$ (if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default): **if\_weak\_cong**:  $b = c \implies$  (if b then x else y) = (if c then x else y)

- → declare own congruence rules with [cong] attribute
- → delete with [cong del]



#### AC Rules

**NICTA** 

#### Example for associative-commutative rules: Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

**Commutative**:  $x \odot y = y \odot x$ 

These 2 rules alone get stuck too early (not confluent).

#### We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operator Isabelle will order terms correctly

Slide 13



### Back to Confluence

Last time: confluence in general is undecidable. But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

#### Definition:

Let  $l_1 \longrightarrow r_1$  and  $l_2 \longrightarrow r_2$  be two rules with disjoint variables. They form a **critical pair** if a non-variable subterm of  $l_1$  unifies with  $l_2$ .

#### Example:

| (1)+(3) | $\{x \mapsto g \ z\}$ | $a \stackrel{(1)}{\longleftarrow}$ | f g t | $\xrightarrow{(3)} b$               |
|---------|-----------------------|------------------------------------|-------|-------------------------------------|
| (3)+(2) | $\{z \mapsto y\}$     | $b \xleftarrow{(3)}$               | f g t | $\stackrel{(2)}{\longrightarrow} b$ |

Slide 15

#### Completion



NICTA

(1)  $f x \longrightarrow a$  (2)  $g y \longrightarrow b$  (3)  $f (g z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

#### Example:

(1)+(3) 
$$\{x \mapsto g z\}$$
  $a \stackrel{(1)}{\longleftarrow} f g t \stackrel{(3)}{\longrightarrow} b$   
shows that  $a = b$  (because  $a \stackrel{\leftrightarrow}{\longleftrightarrow} b$ ), so we add  $a \longrightarrow b$  as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

