COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

Content

Rough timeline

- Intro & motivation, getting started
 - [1]

- Foundations & Principles
 - Lambda Calculus, natural deduction
 - [2,3,4a]
 - Higher Order Logic
 - [5,6,7]
 - Term rewriting
 - [8,9,10c]

- Proof & Specification Techniques
 - Isar
 - [11,12d]
 - Inductively defined sets, rule induction
 - [13*,15]
 - Datatypes, recursion, induction
 - [16,17,18,19]
 - Calculational reasoning, mathematics style proofs
 - [20]
 - Hoare logic: proofs about programs
 - [21*,22,23]

Last Time

- Equations and Term Rewriting
- Confluence and Termination of reduction systems
- Term Rewriting in Isabelle

Applying a Rewrite Rule

- \(\alpha \to \beta \) applicable to term \(t[\sigma] \)
 if there is substitution \(\sigma \) such that \(\sigma \alpha = \beta \)
- Result: \(t[\sigma \beta] \)
- Equationally: \(t[\sigma] = t[\sigma \beta] \)

Example:

Rule: \(0 + n \to n \)
Term: \(a + (0 + (b + c)) \)
Substitution: \(\sigma = \{ n \mapsto b + c \} \)
Result: \(a + (b + c) \)
Conditional Term Rewriting

Rewrite rules can be conditional:

\[[P_1 \ldots P_n] \Rightarrow l = r \]

is applicable to term \(t \sigma \) with \(\sigma \) if

\(\sigma l = s \) and

\(\sigma P_1, \ldots, \sigma P_n \) are provable by rewriting.

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

```
lemma "f x = g z \land g x = f x \Rightarrow f x = T"
```

Preprocessing

Preprocessing (recursive) for maximal simplification power:

\[\neg A \Rightarrow A = \text{False} \]

\[A \Rightarrow B \Rightarrow A \Rightarrow B \]

\[A \land B \Rightarrow A, B \]

\[\forall x. A x \Rightarrow A \ ?x \]

\[A \Rightarrow A = \text{True} \]

Example:

\((p \Rightarrow q \land \neg r) \land s \Rightarrow p \Rightarrow q = \text{True} \)

\(p = \text{False} \)

\(s = \text{True} \)
Case splitting with simp

\[P (\text{if } A \text{ then } s \text{ else } t) = (A \rightarrow P s) \land (\neg A \rightarrow P t) \]

Automatic

\[P \text{ (case } e \text{ of } 0 \Rightarrow a | \text{Suc } n \Rightarrow b) = (e = 0 \rightarrow P a) \land (\forall n. e = \text{Suc } n \rightarrow P b) \]

Manually: apply \((\text{simp split: nat.split})\)

Similar for any data type \(t\): \(t\cdot\text{split}\)

Congruence Rules

Congruence rules are about using context

Example: in \(P \rightarrow Q\) we could use \(P\) to simplify terms in \(Q\)

For \(\Rightarrow\) hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: \([P = P'; P' \Rightarrow Q = Q'] \Rightarrow (P \rightarrow Q) = (P' \rightarrow Q')\)

Read: to simplify \(P \rightarrow Q\)

\(\rightarrow\) first simplify \(P\) to \(P'\)

\(\rightarrow\) then simplify \(Q\) to \(Q'\) using \(P'\) as assumption

\(\rightarrow\) the result is \(P' \rightarrow Q'\)

More Congruence

Sometimes useful, but not used automatically (slowdown):

\[\text{conj.cong: } \[P = P'; P' \Rightarrow Q = Q'] \Rightarrow (P \land Q) = (P' \land Q') \]

Context for if-then-else:

\[\text{if.cong: } [b = c; c \Rightarrow x = u; \neg c \Rightarrow y = v] \Rightarrow (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } u \text{ else } v) \]

Prevent rewriting inside then-else (default):

\[\text{if.weak.cong: } b = c \Rightarrow (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y) \]

\(\rightarrow\) declare own congruence rules with \([\text{cong}]\) attribute

\(\rightarrow\) delete with \([\text{cong del}]\)

Ordered rewriting

Problem: \(x + y \rightarrow y + x\) does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: \(b + a \sim a + b\) but not \(a + b \sim b + a\).

For types \text{nat}, \text{int} etc:

- \text{lemmas add_ac} sort any sum (\(+\))
- \text{lemmas times_ac} sort any product (\(*\))

Example: apply \((\text{simp add: add_ac})\) yields

\((b + c) + a \sim \cdot \sim a + (b + c)\)
Example for associative-commutative rules:

Associative: \((x \odot y) \odot z = x \odot (y \odot z)\)

Commutative: \(x \odot y = y \odot x\)

These 2 rules alone get stuck too early (not confluent).

Example: \((z \odot x) \odot (y \odot v)\)

We want: \((z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))\)

We get: \((z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))\)

We need: AC rule \(x \odot (y \odot z) = y \odot (x \odot z)\)

If these 3 rules are present for an AC operator Isabelle will order terms correctly

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!

Problem: overlapping lhs of rules.

Definition:
Let \(l_1 \rightarrow r_1\) and \(l_2 \rightarrow r_2\) be two rules with disjoint variables. They form a critical pair if a non-variable subterm of \(l_1\) unifies with \(l_2\).

Example:
Rules: (1) \(f x \rightarrow a\) (2) \(g y \rightarrow b\) (3) \(f (g z) \rightarrow b\)

Critical pairs:
(1)+(3) \(\{x \rightarrow g z\}\) \(a \leftrightarrow b\)
(3)+(2) \(\{z \rightarrow y\}\) \(b \leftrightarrow b\)

is not confluent

But it can be made confluent by adding rules!
How: join all critical pairs

Example:
(1)+(3) \(\{x \rightarrow g z\}\) \(a \leftrightarrow b\)
shows that \(a = b\) (because \(a \leftrightarrow b\)), so we add \(a \rightarrow b\) as a rule

This is the main idea of the Knuth-Bendix completion algorithm.
Orthogonal Rewriting Systems

Definitions:

A rule \(l \rightarrow r \) is **left-linear** if no variable occurs twice in \(l \).

A **rewrite system** is **left-linear** if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages