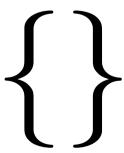


COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray



Content

	Rough timeline
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[2,3,4 ^a]
 Higher Order Logic 	$[5,6^b,7]$
Term rewriting	[8,9,10 ^c]
→ Proof & Specification Techniques	
• Isar	$[11,12^d]$
 Inductively defined sets, rule induction 	[13 ^e ,15]
 Datatypes, recursion, induction 	[16,17 ^f ,18,19]
 Calculational reasoning, mathematics style proofs 	[20]
 Hoare logic, proofs about programs 	[21 ^g ,22,23]

 $[^]a$ a1 out; b a1 due; c a2 out; d a2 due; e session break; f a3 out; g a3 due

Last Time

- → Sets
- → Type Definitions
- → Inductive Definitions

How Inductive Definitions Work

The Nat Example

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers N
- \rightarrow But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the **smallest** set that is **consistent** with the rules.

Why the smallest set?

- → Objective: **no junk**. Only what must be in *X* shall be in *X*.
- → Gives rise to a nice proof principle (rule induction)

Formally

Rules
$$\frac{a_1 \in X}{a \in X}$$
 \dots $a_n \in X$ with $a_1, \dots, a_n, a \in A$ define set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X) possibly infinite)

Applying rules R to a set B: \hat{R} $B \equiv \{x. \exists H. (H, x) \in R \land H \subseteq B\}$

Example:

$$R \equiv \{(\{\},0)\} \cup \{(\{n\},n+1). \ n \in \mathbb{R}\}$$

$$\hat{R} \{3,6,10\} = \{0,4,7,11\}$$

The Set

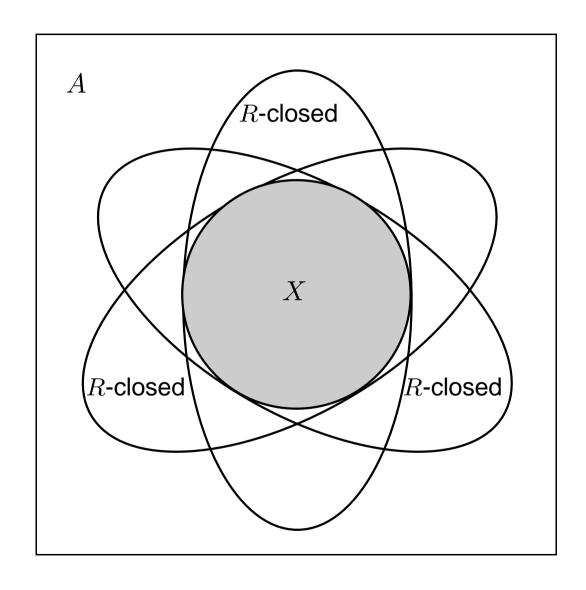
Definition: B is R-closed iff \hat{R} $B \subseteq B$

Definition: X is the least R-closed subset of A

This does always exist:

Fact: $X = \bigcap \{B \subseteq A.\ B\ R\text{--closed}\}$

Generation from Above



Rule Induction

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

induces induction principle

$$\llbracket P \ 0; \ \bigwedge n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in X. \ P \ x$$

In general:

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

Why does this work?

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

$$\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \wedge \dots \wedge P \ a_n \Longrightarrow P \ a$$
 says
$$\{x. \ P \ x\} \text{ is } R\text{-closed}$$

but: X is the least R-closed set

hence: $X \subseteq \{x. \ P \ x\}$

which means: $\forall x \in X. \ P \ x$

qed

Rules with side conditions

$$\frac{a_1 \in X \quad \dots \quad a_n \in X \quad C_1 \quad \dots \quad C_m}{a \in X}$$

induction scheme:

$$(\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \land$$

$$C_1 \land \dots \land C_m \land$$

$$\{a_1, \dots, a_n\} \subseteq X \Longrightarrow P \ a)$$

$$\Longrightarrow$$

$$\forall x \in X. \ P \ x$$

X as Fixpoint

How to compute X?

 $X = \bigcap \{B \subseteq A.\ B\ R - \mathsf{closed}\}\ \mathsf{hard}\ \mathsf{to}\ \mathsf{work}\ \mathsf{with}.$

Instead: view X as least fixpoint, X least set with $\hat{R} X = X$.

Fixpoints can be approximated by iteration:

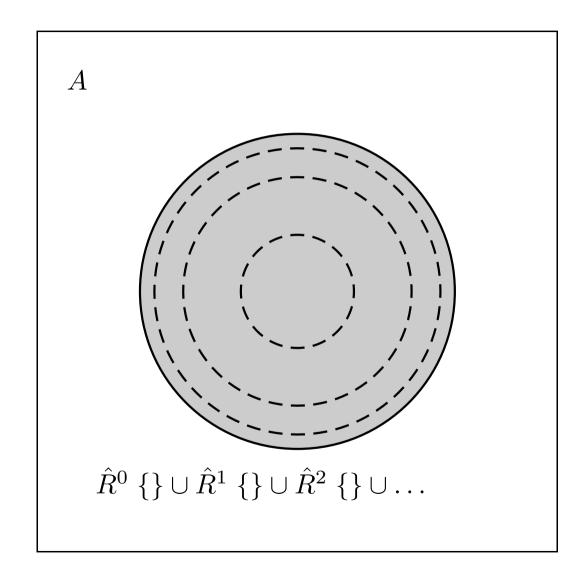
$$X_0 = \hat{R}^0 \{\} = \{\}$$

 $X_1 = \hat{R}^1 \ \{\} = \text{rules without hypotheses}$

•

$$X_n = \hat{R}^n \ \{\}$$

$$X_{\omega} = \bigcup_{n \in \mathbb{N}} (R^n \{\}) = X$$



Does this always work?

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function.

Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:

- → least and greatest fixpoints exist (complete lattice always non-empty).
- → can be reached by (possibly infinite) iteration. (Why?)

Exercise

Formalize the this lecture in Isabelle:

- \rightarrow Define closed $f A :: (\alpha \operatorname{set} \Rightarrow \alpha \operatorname{set}) \Rightarrow \alpha \operatorname{set} \Rightarrow \operatorname{bool}$
- ightharpoonup Show closed $f \ A \wedge \operatorname{closed} f \ B \Longrightarrow \operatorname{closed} f \ (A \cap B)$ if f is monotone (mono is predefined)
- \rightarrow Define **Ifpt** f as the intersection of all f-closed sets
- \rightarrow Show that Ifpt f is a fixpoint of f if f is monotone
- → Show that Ifpt *f* is the least fixpoint of *f*
- \rightarrow Declare a constant $R :: (\alpha \operatorname{set} \times \alpha) \operatorname{set}$
- ightharpoonup Define $\hat{R} :: \alpha \text{ set } \Rightarrow \alpha \text{ set in terms of } R$
- \rightarrow Show soundness of rule induction using R and lfpt \hat{R}

RULE INDUCTION IN ISAR

Inductive definition in Isabelle


```
inductive X::\alpha\Rightarrow\mathsf{bool}
```

where

```
\mathsf{rule}_1 \colon "[\![X\ s;A]\!] \Longrightarrow X\ s'"
```

•

 $| rule_n : \dots$

Rule induction


```
show "X x \Longrightarrow P x"

proof (induct rule: X.induct)

fix s and s' assume "X s" and "A" and "P s"

...

show "P s'"

next

:
qed
```



```
show "X x \Longrightarrow P x"
proof (induct rule: X.induct)
  case rule<sub>1</sub>
  show ?case
next
next
  case rule_n
  show ?case
qed
```

Implicit selection of induction rule


```
assume A: "X x"
show "P x"
using A proof induct
qed
lemma assumes A: "X x" shows "P x"
using A proof induct
qed
```

Renaming free variables in rule

case (rule_i
$$x_1 \dots x_k$$
)

Renames first k variables in rule_i to $x_1 \dots x_k$.

A remark on style

- → case (rule_i x y) ... show ?case is easy to write and maintain
- \rightarrow fix $x \ y$ assume $formula \dots$ show formula' is easier to read:
 - all information is shown locally
 - no contextual references (e.g. ?case)

DEMO: RULE INDUCTION IN ISAR

We have learned today ...

- → Formal background of inductive definitions
- → Definition by intersection
- → Computation by iteration
- → Formalisation in Isabelle
- → Rule Induction in Isar