COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

$$
\}
$$

Content

\rightarrow Intro \& motivation, getting started
\rightarrow Foundations \& Principles

- Lambda Calculus, natural deduction
- Higher Order Logic
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Isar
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Calculational reasoning, mathematics style proofs
- Hoare logic, proofs about programs
${ }^{a}$ a1 out; ${ }^{b}$ a1 due; ${ }^{c}$ a2 out; ${ }^{d}$ a2 due; ${ }^{e}$ session break; ${ }^{f}$ a3 out; ${ }^{g}$ a3 due
\rightarrow Sets
\rightarrow Type Definitions
\rightarrow Inductive Definitions

How Inductive Definitions Work

The Nat Example

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

$\rightarrow N$ is the set of natural numbers \mathbb{N}
\rightarrow But why not the set of real numbers? $0 \in \mathbb{R}, n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
$\rightarrow \mathbb{N}$ is the smallest set that is consistent with the rules.

Why the smallest set?

\rightarrow Objective: no junk. Only what must be in X shall be in X.
\rightarrow Gives rise to a nice proof principle (rule induction)

Formally

$$
\begin{gathered}
\text { Rules } \frac{a_{1} \in X \quad \ldots \quad a_{n} \in X}{a \in X} \text { with } a_{1}, \ldots, a_{n}, a \in A \\
\text { define set } X \subseteq A
\end{gathered}
$$

Formally: set of rules $R \subseteq A$ set $\times A \quad(R, X$ possibly infinite)
Applying rules R to a set $B: \quad \hat{R} B \equiv\{x . \exists H .(H, x) \in R \wedge H \subseteq B\}$

Example:

$$
\begin{array}{ll}
R & \equiv\{(\}, 0)\} \cup\{(\{n\}, n+1) \cdot n \in \mathbb{R}\} \\
\hat{R}\{3,6,10\} & =\{0,4,7,11\}
\end{array}
$$

Definition: $\quad B$ is R-closed iff $\hat{R} B \subseteq B$

Definition: $\quad X$ is the least R-closed subset of A

This does always exist:

Fact: $\quad X=\bigcap\{B \subseteq A . B R$-closed $\}$

Generation from Above

Rule Induction

$$
\overline{0 \in N} \quad \frac{n \in N}{n+1 \in N}
$$

induces induction principle

$$
\llbracket P 0 ; \wedge n . P n \Longrightarrow P(n+1) \rrbracket \Longrightarrow \forall x \in X . P x
$$

In general:

$$
\frac{\forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a}{\forall x \in X . P x}
$$

$$
\begin{aligned}
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \forall x \in X . P x \\
& \forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R . P a_{1} \wedge \ldots \wedge P a_{n} \Longrightarrow P a \\
& \quad \text { says } \\
& \{x . P x\} \text { is } R \text {-closed }
\end{aligned}
$$

but: $\quad X$ is the least R-closed set

$$
\begin{array}{ll}
\text { hence: } & X \subseteq\{x . P x\} \\
\text { which means: } & \forall x \in X . P x
\end{array}
$$

qed

\[

\]

induction scheme:

$$
\begin{aligned}
&\left(\forall\left(\left\{a_{1}, \ldots a_{n}\right\}, a\right) \in R .\right. P a_{1} \wedge \ldots \wedge P a_{n} \wedge \\
& C_{1} \wedge \ldots \wedge C_{m} \wedge \\
&\left.\left\{a_{1}, \ldots, a_{n}\right\} \subseteq X \Longrightarrow P a\right) \\
& \Longrightarrow \\
& \forall x \in X . P x
\end{aligned}
$$

X as Fixpoint

How to compute X ?
$X=\bigcap\{B \subseteq A . B R-$ closed $\}$ hard to work with.
Instead: view X as least fixpoint, X least set with $\hat{R} X=X$.

Fixpoints can be approximated by iteration:

$$
\begin{aligned}
& X_{0}=\hat{R}^{0}\{ \}=\{ \} \\
& X_{1}=\hat{R}^{1}\{ \}=\text { rules without hypotheses } \\
& \vdots \\
& X_{n}=\hat{R}^{n}\{ \} \\
& X_{\omega}=\bigcup_{n \in \mathbb{N}}\left(R^{n}\{ \}\right)=X
\end{aligned}
$$

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f:: A \Rightarrow A$ a monotone function.
Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:

\rightarrow least and greatest fixpoints exist (complete lattice always non-empty).
\rightarrow can be reached by (possibly infinite) iteration. (Why?)

Exercise

Formalize the this lecture in Isabelle:
\rightarrow Define closed $f A::(\alpha$ set $\Rightarrow \alpha$ set $) \Rightarrow \alpha$ set \Rightarrow bool
\rightarrow Show closed $f A \wedge$ closed $f B \Longrightarrow$ closed $f(A \cap B)$ if f is monotone (mono is predefined)
\rightarrow Define lfpt f as the intersection of all f-closed sets
\rightarrow Show that lfpt f is a fixpoint of f if f is monotone
\rightarrow Show that lfpt f is the least fixpoint of f
\rightarrow Declare a constant $R::(\alpha$ set $\times \alpha)$ set
\rightarrow Define $\hat{R}:: \alpha$ set $\Rightarrow \alpha$ set in terms of R
\rightarrow Show soundness of rule induction using R and lfpt \hat{R}

Rule Induction in Isar

Inductive definition in Isabelle

```
inductive }X::\alpha=>\mathrm{ bool
where
rule}\mp@subsup{]}{1}{}:"\llbracketXs;A\rrbracket\LongrightarrowX > '"
| rule n: ...
```

```
show " }Xx\LongrightarrowPx
proof (induct rule: X.induct)
    fix s}\mathrm{ and }s\mathrm{ ' assume " }Xs\mathrm{ " and " }A\mathrm{ " and " }Ps\mathrm{ "
    show "P s'"
next
\vdots
qed
```

```
show " }X=\LongrightarrowP>
proof (induct rule: X.induct)
    case rule
    show ?case
next
:
next
    case rule 
    show ?case
qed
```


Implicit selection of induction rule

```
assume A: "X x"
show "P x"
using A proof induct
qed
lemma assumes A: " }Xx\mathrm{ " shows " }Px\mathrm{ "
using A proof induct
qed
```


Renaming free variables in rule

case $\left(\right.$ rule $\left._{i} x_{1} \ldots x_{k}\right)$

Renames first k variables in rule ${ }_{i}$ to $x_{1} \ldots x_{k}$.

A remark on style

\rightarrow case (rule ${ }_{i} x y$)...show ?case is easy to write and maintain
$\rightarrow \boldsymbol{f i x} x y$ assume formula ...show formula ${ }^{\prime}$ is easier to read:

- all information is shown locally
- no contextual references (e.g. ?case)

Demo: Rule Induction in Isar

We have learned today ...

\rightarrow Formal background of inductive definitions
\rightarrow Definition by intersection
\rightarrow Computation by iteration
\rightarrow Formalisation in Isabelle
\rightarrow Rule Induction in Isar

