Rough timeline

- Intro & motivation, getting started

- Foundations & Principles
 - Lambda Calculus, natural deduction
 - Higher Order Logic
 - Term rewriting

- Proof & Specification Techniques
 - Isar
 - Inductively defined sets, rule induction
 - Datatypes, recursion, induction
 - Calculational reasoning, mathematics style proofs
 - Hoare logic, proofs about programs

Content

slide 1

slide 2

slide 3

slide 4

Example:

\[
\text{datatype 'a list} = \text{Nil} \mid \text{Cons 'a 'a list}
\]

Properties:

\[-\]

- Constructors:
 \[
 \begin{align*}
 \text{Nil} & \quad :\quad \text{'a list} \\
 \text{Cons} & \quad :\quad \text{'a} \to \text{'a list} \to \text{'a list}
 \end{align*}
 \]

- Distinctness: \(\text{Nil} \neq \text{Cons x xs}\)

- Injectivity: \((\text{Cons x xs} = \text{Cons y ys}) = (x = y \land \text{xs} = \text{ys})\)
How is this Type Defined?

datatype `a list = Nil | Cons `a `a list

- internally defined using typedef
- hence: describes a set
- set = trees with constructors as nodes
- inductive definition to characterise which trees belong to datatype

More detail: HOL/Datatype.thy

Datatype Limitations

Must be definable as set.

- Infinitely branching ok.
- Mutually recursive ok.
- Strictly positive (right of function arrow) occurrence ok.

Not ok:

datatype `t = C (t ⇒ bool)
| D (bool ⇒ t ⇒ bool)
| E (t ⇒ bool ⇒ bool)

Because: Cantor’s theorem (α set is larger than α)

Case

Every datatype introduces a case construct, e.g.

(case xs of [] ⇒ ...) | (y #ys ⇒ ...) y ... ys ...)

In general: one case per constructor

- Nested patterns allowed: x #y #z
- Dummy and default patterns with
- Binds weakly, needs () in context

Cases

apply (case_tac t)

creates k subgoals

[t = C1 x1 ... xn] ⇒ ...

one for each constructor C1
Why nontermination can be harmful

How about \(f \ x = f \ x + 1 \)?

Subtract \(f \ x \) on both sides.

\[\Rightarrow 0 = 1 \]

All functions in HOL must be total!

Principle Recursion

\[\text{primrec guarantees termination structurally} \]

Example primrec def:

\[\text{primrec app :: } \text{"a list } \rightarrow \text{"a list } \rightarrow \text{"a list}\]

\[\text{where } \]

\[\text{"app Nil ys = ys" } | \]

\[\text{"app (Cons x xs) ys = Cons x (app xs ys)"} \]
The General Case

If τ is a datatype (with constructors C_1, \ldots, C_k) then $f : \tau \Rightarrow \tau'$ can be defined by primitive recursion:

\[
f(C_1 y_1 \ldots y_{m_1}) = r_1 \\
\vdots \\
f(C_k y_1 \ldots y_{m_k}) = r_k
\]

The recursive calls in r, must be structurally smaller
(of the form $f a_1 \ldots y_i, \ldots a_p$)

How does this Work?

primrec just fancy syntax for a recursion operator

Example:

\[
\begin{align*}
\text{list}	ext{rec} &:: \text{"b} \Rightarrow \text{"a list} \Rightarrow \text{"b} \Rightarrow \text{"b} \\ \text{list}	ext{rec} f_1 f_2 \text{ Nil} & = f_1 \\ \text{list}	ext{rec} f_1 f_2 \text{ (Cons } x \text{ xs)} & = f_2 x \text{ xs} (\text{list}	ext{rec} f_1 f_2 \text{ xs}) \\
\text{app} & = \text{list}	ext{rec} (\lambda y. \text{ys}) (\lambda x. \text{xs} \text{ xs'}, \lambda y. \text{Cons } (x y) \text{ ys}) \\
\text{primrec app} &:: \text{"a list} \Rightarrow \text{"a list} \Rightarrow \text{"a list} \\
\text{where} \\
\text{"app} \text{ Nil } y s = y s \\
\text{"app} \text{ (Cons } x \text{ xs) } y s = \text{Cons } x \text{ (app xs ys)}
\end{align*}
\]

Predefined Datatypes

list_rec

Defined: automatically, first inductively (set), then by epsilon

\[
\begin{align*}
(\text{Nil, } f_1) &\in \text{list_rel } f_1 f_2 \\
(\text{Cons } x \text{ xs, } f_2 x \text{ xs } xs') &\in \text{list_rel } f_1 f_2 \\
\text{list_rec } f_1 f_2 \text{ xs } &\equiv \text{SOME } y. \ (x y) \in \text{list_rel } f_1 f_2 \\
\text{Automatic proof that set def indeed is total function} \\
\text{(the equations for list_rec are lemmas!)}
\end{align*}
\]
nat is a datatype

```ml
datatype nat = 0 | Suc nat
```

Functions on nat definable by primrec!

```ml
primrec
  f 0     = ...
  f (Suc n) = ... f n ...
```

Option

```ml
datatype 'a option = None | Some 'a
```

Important application:

```ml
'b ⇒ 'a option ∼ partial function:
  None ∼ no result
  Some a ∼ result a
```

Example:

```ml
primrec lookup :: 'k ⇒ ('k × 'v) list ⇒ 'v option
where
  lookup k []     = None |
  lookup k (x #xs) = (if fst x = k then Some (snd x) else lookup k xs)
```
Structural induction

\(P \) holds for all lists \(x \) if
\(\Rightarrow P \) Nil
\(\Rightarrow \) and for arbitrary \(x \) and \(xs \), \(P xs \Rightarrow P (x \# xs) \)

Induction theorem list.induct:
\[[P \]; \forall a \text{ list. } P \text{ list } \Rightarrow P (a \# \text{list})] \Rightarrow P \text{ list } \]

\(\Rightarrow \) General proof method for induction: (induct \(x \))
- \(x \) must be a free variable in the first subgoal.
- type of \(x \) must be a datatype.

Basic heuristics

Theorems about recursive functions are proved by induction

Induction on argument number \(i \) of \(f \)
if \(f \) is defined by recursion on argument number \(i \)

Example

A tail recursive list reverse:
primrec itrev :: \('a \text{ list } \Rightarrow 'a \text{ list } \Rightarrow 'a \text{ list } \)
where
itrev [] _ = itrev _ []
itrev (x \# xs) _ = itrev xs (x \# _)

lemma itrev xs [] = rev xs

DEMO: PROOF ATTEMPT
Generalisation

Replace constants by variables

\[\text{lemma } \text{itrev } \, x \, s \, y \, s = \text{rev } \, x \, s \, @ \, y \, s \]

Quantify free variables by \(\forall \)
(\(except \) the induction variable)

\[\text{lemma } \forall y. \, \text{itrev } \, x \, s \, y = \text{rev } \, x \, s \, @ \, y \, s \]

Slide 25

We have seen today...

- Datatypes
- Primitive recursion
- Case distinction
- Structural Induction

Slide 26