侵害

Content

Rough timeline

- Intro & motivation, getting started
 - [1]
- Foundations & Principles
 - Lambda Calculus, natural deduction
 - [2, 3, 4]
 - Higher Order Logic
 - [5, 6, 7]
 - Term rewriting
 - [8, 9, 10]
- Proof & Specification Techniques
 - Isar
 - [11, 12]
 - Inductively defined sets, rule induction
 - [13, 14]
 - Datatypes, recursion, induction
 - [15, 16, 17, 18]
 - Calculational reasoning, mathematics style proofs
 - [19]
 - Hoare logic, proofs about programs
 - [20]
 - [21, 22, 23]

a1 out; a1 due; a2 out; a2 due; session break; a3 out; a3 due

Datatypes in Isar

Datatype case distinction

proof (cases term)
 case Constructor1
 ...
 next
 ...
 next
 case (Constructor2, x)
 ...
 next
 qed

 case (Constructor, x) =
 fix x assume Constructor : "term = Constructor, x"

Slide 1

Slide 2

Slide 3

Slide 4
Structural induction for type nat

show $P \ n$
proof (induct n)
case 0
 = let ?case = $P \ 0$
...
show ?case
next
case (Suc n)
 = fix n assume Suc: $P \ n$
 let ?case = $P \ (Suc \ n)$
 ... n ...
show ?case
qed

Structural induction with \Rightarrow and \land

show $\forall x. A \ n \Rightarrow P \ n$
proof (induct n)
case 0
 = fix x assume 0: "$A \ 0$"
 let ?case = "$P \ 0$"
...
show ?case
next
case (Suc n)
 = fix n and x
 assume Suc: $\forall x. A \ n \Rightarrow P \ n$
 "$A \ (Suc \ n)$"
 ... n ...
 let ?case = "$P \ (Suc \ n)"$
 ... n ...
show ?case
qed
We have seen today ...

- Datatypes in Isar
- Defining regular expressions as a data type
- Playing with recursion and induction