COMP 4161
 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray
fun

Content

\rightarrow Intro \& motivation, getting started
\rightarrow Foundations \& Principles

- Lambda Calculus, natural deduction
- Higher Order Logic
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Isar
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Calculational reasoning, mathematics style proofs
- Hoare logic, proofs about programs
${ }^{a}$ a1 out; ${ }^{b}$ a1 due; ${ }^{c}$ a2 out; ${ }^{d}$ a2 due; ${ }^{e}$ session break; ${ }^{f}$ a3 out; ${ }^{g}$ a3 due

General Recursion

The Choice

\rightarrow Limited expressiveness, automatic termination

- primrec
\rightarrow High expressiveness, termination proof may fail
- fun
\rightarrow High expressiveness, tweakable, termination proof manual
- function

fun - examples

fun sep :: "' $a \Rightarrow$ ' a list \Rightarrow ' a list"
where
"sep a (x \# y \# zs) = x \# a \# sep a (y \# zs)" |
"sep a xs = xs"
fun ack :: "nat \Rightarrow nat \Rightarrow nat"
where
"ack 0 n = Suc n"
"ack (Suc m) $0=$ ack m 1" \mid
"ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
\rightarrow The definiton:

- pattern matching in all parameters
- arbitrary, linear constructor patterns
- reads equations sequentially like in Haskell (top to bottom)
- proves termination automatically in many cases (tries lexicographic order)
\rightarrow Generates own induction principle
\rightarrow May fail to prove termination:
- use function (sequential) instead
- allows you to prove termination manually

fun - induction principle

\rightarrow Each fun definition induces an induction principle
\rightarrow For each equation:
show P holds for lhs, provided P holds for each recursive call on rhs
\rightarrow Example sep.induct:
【 $\bigwedge a . P a[] ;$
$\wedge a w . P a[w]$
$\bigwedge a x y z s . P a(y \# z s) \Longrightarrow P a(x \# y \# z s) ;$
$\rrbracket \Longrightarrow P a x s$

Isabelle tries to prove termination automatically

\rightarrow For most functions this works with a lexicographic termination relation.
\rightarrow Sometimes not \Rightarrow error message with unsolved subgoal
\rightarrow You can prove automation separately.
function (sequential) quicksort where
quicksort [] = [] |
quicksort $(x \# x s)=$ quicksort $[y \leftarrow x s . y \leq x] @[x] @$ quicksort $[y \leftarrow x s . x<y]$
by pat_completeness auto
termination
by (relation "measure length") (auto simp: less_Suc_eq_le)
function is the fully tweakable, manual version of fun

Demo

How does fun/function work?

Recall primrec:

\rightarrow defined one recursion operator per datatype
\rightarrow inductive definition of its graph $(x, f x) \in G$
\rightarrow prove totality: $\forall x . \exists y .(x, y) \in G$
\rightarrow prove uniqueness: $(x, y) \in G \Rightarrow(x, z) \in G \Rightarrow y=z$
\rightarrow recursion operator: rec $x=$ THE $y .(x, y) \in$ rec

How does fun/function work?

Similar strategy for fun:
\rightarrow a new inductive definition for each fun f
\rightarrow extract recursion scheme for equations in f
\rightarrow define graph f _rel inductively, encoding recursion scheme
\rightarrow prove totality (= termination)
\rightarrow prove uniqueness (automatic)
\rightarrow derive original equations from f _rel
\rightarrow export induction scheme from f _rel

Can separate and defer termination proof:
\rightarrow skip proof of totality
\rightarrow instead derive equations of the form: $x \in f _d o m \Rightarrow f x=\ldots$
\rightarrow similarly, conditional induction principle
\rightarrow f_dom $=$ acc $f_{-} r e l$
\rightarrow acc $=$ accessible part of f _rel
\rightarrow the part that can be reached in finitely many steps
\rightarrow termination $=\forall x . x \in f_{-}$dom
\rightarrow still have conditional equations for partial functions

Proving Termination

Command termination fun_name sets up termination goal $\forall x . x \in$ fun_name_dom

Three main proof methods:
\rightarrow lexicographic_order (default tried by fun)
\rightarrow size_change (different automated technique)
\rightarrow relation \mathbf{R} (manual proof via well-founded relation)

Well Founded Orders

Definition

$<_{r}$ is well founded if well founded induction holds
wf $r \equiv \forall P .\left(\forall x .\left(\forall y<_{r} x . P y\right) \longrightarrow P x\right) \longrightarrow(\forall x . P x)$

Well founded induction rule:

$$
\frac{\text { wf } r \quad \bigwedge x .\left(\forall y<_{r} x . P y\right) \Longrightarrow P x}{P a}
$$

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt $<_{r}$

$$
\begin{aligned}
\min r Q x & \equiv \forall y \in Q \cdot y \not \not_{r} x \\
\operatorname{wf} r & =(\forall Q \neq\{ \} \cdot \exists m \in Q \cdot \min r Q m)
\end{aligned}
$$

Well Founded Orders: Examples

$\rightarrow<$ on \mathbb{N} is well founded well founded induction = complete induction
$\rightarrow>$ and \leq on \mathbb{N} are not well founded
$\rightarrow x<_{r} y=x$ dvd $y \wedge x \neq 1$ on \mathbb{N} is well founded the minimal elements are the prime numbers
$\rightarrow(a, b)<_{r}(x, y)=a<_{1} x \vee a=x \wedge b<_{2} y$ is well founded if $<_{1}$ and $<_{2}$ are
$\rightarrow A<_{r} B=A \subset B \wedge$ finite B is well founded
$\rightarrow \subseteq$ and \subset in general are not well founded
More about well founded relations: Term Rewriting and All That

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme? Not fixed anymore as in primrec.

Examples:

\rightarrow fun fib where
fib $0=1 \mid$
fib (Suc 0) = 1 |
fib (Suc (Suc n)) $=$ fib $n+$ fib (Suc n)
Recursion: Suc (Suc n) $\leadsto n$, Suc (Suc n) \leadsto Suc n
\rightarrow fun f where $f x=($ if $x=0$ then 0 else $f(x-1)$ * 2)
Recursion: $x \neq 0 \Longrightarrow x \sim x-1$

Extracting the Recursion Scheme

Higher Oder:
\rightarrow datatype 'a tree = Leaf 'a | Branch 'a tree list
fun treemap $::($ ' $a \Rightarrow$ 'a) \Rightarrow 'a tree \Rightarrow 'a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn $($ Branch $I)=\operatorname{Branch}($ map $($ treemap fn $) I)$
Recursion: $x \in$ set $I \Longrightarrow(f n$, Branch $I) \leadsto(f n, x)$

How to extract the context information for the call?

Extracting the Recursion Scheme

Extracting context for equations

$$
\Rightarrow
$$

Congruence Rules!
Recall rule if_cong:

$$
\begin{aligned}
& {[|b=c ; c \Longrightarrow x=u ; \neg c \Longrightarrow y=v|] \Longrightarrow} \\
& \text { (if } b \text { then } x \text { else } y \text {) }=(\text { if } c \text { then } u \text { else } v \text {) }
\end{aligned}
$$

Read: for transforming x, use b as context information, for y use $\neg b$.

In fun_def: for recursion in x, use b as context, for y use $\neg b$.

Congruence Rules for fun_defs

The same works for function definitions.
declare my_rule[fundef_cong]
(if_cong already added by default)

Another example (higher-order):
$[\mid \mathrm{xs}=\mathrm{ys} ; \wedge \mathrm{x} . \mathrm{x} \in$ set $\mathrm{ys} \Longrightarrow \mathrm{fx}=\mathrm{gx} \mid] \Longrightarrow$ map $\mathrm{xs}=$ map g ys

Read: for recursive calls in f, f is called with elements of $x s$

Demo

Further Reading

Alexander Krauss,
Automating Recursive Definitions and Termination Proofs in Higher-Order Logic. PhD thesis, TU Munich, 2009.
http://www4.in.tum.de/~krauss/diss/krauss_phd.pdf

We have seen today ...

\rightarrow General recursion with fun/function
\rightarrow Induction over recursive functions
\rightarrow How fun works
\rightarrow Termination, partial functions, congruence rules

