

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

Content

	Rough timeline
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[2,3,4 ^a]
Higher Order Logic	$[5,6^b,7]$
Term rewriting	[8,9,10 ^c]
→ Proof & Specification Techniques	
• Isar	$[11,12^d]$
 Inductively defined sets, rule induction 	[13 ^e ,15]
 Datatypes, recursion, induction 	$[16,17^f,18,19]$
 Calculational reasoning, mathematics style proofs 	[20]
 Hoare logic, proofs about programs 	[21 ^g ,22,23]

 $[^]a$ a1 out; b a1 due; c a2 out; d a2 due; e session break; f a3 out; g a3 due

General Recursion

The Choice

- → Limited expressiveness, automatic termination
 - primrec
- → High expressiveness, termination proof may fail
 - fun
- → High expressiveness, tweakable, termination proof manual
 - function

fun — examples


```
fun sep :: "a ⇒ 'a list ⇒ 'a list"
where
        "sep a (x # y # zs) = x # a # sep a (y # zs)" |
        "sep a xs = xs"

fun ack :: "nat ⇒ nat ⇒ nat"
where
        "ack 0 n = Suc n" |
        "ack (Suc m) 0 = ack m 1" |
```

"ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"

fun

- → The definition:
 - pattern matching in all parameters
 - arbitrary, linear constructor patterns
 - reads equations sequentially like in Haskell (top to bottom)
 - proves termination automatically in many cases (tries lexicographic order)
- → Generates own induction principle
- → May fail to prove termination:
 - use function (sequential) instead
 - allows you to prove termination manually

fun — induction principle

- → Each fun definition induces an induction principle
- → For each equation: show P holds for lhs, provided P holds for each recursive call on rhs
- → Example **sep.induct**:

Termination

Isabelle tries to prove termination automatically

- → For most functions this works with a lexicographic termination relation.
- → Sometimes not ⇒ error message with unsolved subgoal
- → You can prove automation separately.

function (sequential) quicksort where

```
quicksort [] = [] | quicksort (x\#xs) = quicksort [y \leftarrow xs.y \le x]@[x]@ quicksort [y \leftarrow xs.x < y] by pat_completeness auto
```

termination

by (relation "measure length") (auto simp: less_Suc_eq_le)

function is the fully tweakable, manual version of fun

DEMO

How does fun/function work?

Recall **primrec**:

- → defined one recursion operator per datatype
- \rightarrow inductive definition of its graph $(x, f x) \in G$
- \rightarrow prove totality: $\forall x. \; \exists y. \; (x,y) \in G$
- \rightarrow prove uniqueness: $(x,y) \in G \Rightarrow (x,z) \in G \Rightarrow y=z$
- \rightarrow recursion operator: $rec \ x = THE \ y. \ (x, y) \in rec$

How does fun/function work?

Similar strategy for **fun**:

- \rightarrow a new inductive definition for each **fun** f
- \rightarrow extract *recursion scheme* for equations in f
- \rightarrow define graph f_rel inductively, encoding recursion scheme
- → prove totality (= termination)
- → prove uniqueness (automatic)
- \rightarrow derive original equations from f_rel
- \rightarrow export induction scheme from f_rel

How does fun/function work?

Can separate and defer termination proof:

- → skip proof of totality
- \rightarrow instead derive equations of the form: $x \in f_dom \Rightarrow f \ x = \dots$
- → similarly, conditional induction principle
- \rightarrow $f_dom = acc f_rel$
- \rightarrow acc = accessible part of f_rel
- → the part that can be reached in finitely many steps
- \rightarrow termination = $\forall x. \ x \in f_dom$
- → still have conditional equations for partial functions

Proving Termination

Command termination fun_name sets up termination goal

 $\forall x. \ x \in fun_name_dom$

Three main proof methods:

- → lexicographic_order (default tried by fun)
- → size_change (different automated technique)
- → relation R (manual proof via well-founded relation)

Well Founded Orders

Definition

 $<_r$ is well founded if well founded induction holds

wf
$$r \equiv \forall P. (\forall x. (\forall y <_r x. P y) \longrightarrow P x) \longrightarrow (\forall x. P x)$$

Well founded induction rule:

$$\frac{\text{wf } r \quad \bigwedge x. \ (\forall y <_r x. \ P \ y) \Longrightarrow P \ x}{P \ a}$$

Alternative definition (equivalent):

there are no infinite descending chains, or (equivalent): every nonempty set has a minimal element wrt $<_r$

$$\min r \ Q \ x = \forall y \in Q. \ y \not<_r x$$

$$\text{wf } r = (\forall Q \neq \{\}. \ \exists m \in Q. \ \min r \ Q \ m)$$

Well Founded Orders: Examples

- → < on IN is well founded well founded induction = complete induction
- \rightarrow > and \leq on \mathbb{N} are **not** well founded
- $\Rightarrow x <_r y = x \text{ dvd } y \land x \neq 1 \text{ on } \mathbb{N} \text{ is well founded}$ the minimal elements are the prime numbers
- \Rightarrow $(a,b)<_r(x,y)=a<_1x\vee a=x\wedge b<_2y$ is well founded if $<_1$ and $<_2$ are
- $A <_r B = A \subset B \land \text{ finite } B \text{ is well founded}$
- → ⊆ and ⊂ in general are **not** well founded

More about well founded relations: Term Rewriting and All That

So far for termination. What about the recursion scheme? Not fixed anymore as in primrec.

Examples:

→ fun fib where

fib
$$0 = 1$$
 |
fib $(Suc 0) = 1$ |
fib $(Suc (Suc n)) = fib n + fib (Suc n)$

Recursion: Suc (Suc n) \sim n, Suc (Suc n) \sim Suc n

 \rightarrow fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: $x \neq 0 \Longrightarrow x \leadsto x - 1$

Extracting the Recursion Scheme

Higher Oder:

→ datatype 'a tree = Leaf 'a | Branch 'a tree list

```
fun treemap :: ('a \Rightarrow 'a) \Rightarrow 'a tree \Rightarrow 'a tree where treemap fn (Leaf n) = Leaf (fn n) | treemap fn (Branch I) = Branch (map (treemap fn) I)
```

Recursion: $x \in \text{set I} \Longrightarrow (\text{fn, Branch I}) \rightsquigarrow (\text{fn, x})$

How to extract the context information for the call?

Extracting the Recursion Scheme

Extracting context for equations

 \Rightarrow

Congruence Rules!

Recall rule if_cong:

$$[|b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v|] \Longrightarrow$$
 (if b then x else y) = (if c then u else v)

Read: for transforming x, use b as context information, for y use $\neg b$.

In fun_def: for recursion in x, use b as context, for y use $\neg b$.

Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong]
(if_cong already added by default)

Another example (higher-order):

[|
$$xs = ys$$
; $\bigwedge x$. $x \in set ys \Longrightarrow f x = g x |] \Longrightarrow map f xs = map g ys$

Read: for recursive calls in f, f is called with elements of xs

DEMO

Further Reading

Alexander Krauss,

Automating Recursive Definitions and Termination Proofs in Higher-Order Logic. PhD thesis, TU Munich, 2009.

http://www4.in.tum.de/~krauss/diss/krauss_phd.pdf

We have seen today ...

- → General recursion with fun/function
- → Induction over recursive functions
- → How fun works
- → Termination, partial functions, congruence rules