NICTA

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

fun

Slide 1

Content	NICTA
	NICIA
	Rough timeline
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[2,3,4 ^a]
Higher Order Logic	[5,6 ^b ,7]
Term rewriting	[8,9,10 ^c]
➔ Proof & Specification Techniques	
• Isar	[11,12 ^d]
 Inductively defined sets, rule induction 	[13 ^e ,15]
 Datatypes, recursion, induction 	[16,17 ^f ,18,19]
 Calculational reasoning, mathematics style proofs 	[20]
 Hoare logic, proofs about programs 	[21 ^g ,22,23]

^aa1 out; ^ba1 due; ^ca2 out; ^da2 due; ^esession break; ^fa3 out; ^ga3 due

Slide 2

General Recursion

The Choice

- → Limited expressiveness, automatic termination
 - primrec
- → High expressiveness, termination proof may fail
 - fun
- → High expressiveness, tweakable, termination proof manual
 - function

Slide 3

fun — examples NICTA

fun sep :: "'a \Rightarrow 'a list \Rightarrow 'a list" where "sep a (x # y # zs) = x # a # sep a (y # zs)" | "sep a xs = xs"

fun ack :: "nat ⇒ nat ⇒ nat" where "ack 0 n = Suc n" | "ack (Suc m) 0 = ack m 1" | "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"

fun

- → The definiton:
 - pattern matching in all parameters
 - arbitrary, linear constructor patterns
 - reads equations sequentially like in Haskell (top to bottom)
 - proves termination automatically in many cases (tries lexicographic order)
- → Generates own induction principle
- → May fail to prove termination:
 - use function (sequential) instead
 - · allows you to prove termination manually

Termination

NICTA

Isabelle tries to prove termination automatically

- → For most functions this works with a lexicographic termination relation.
- → Sometimes not ⇒ error message with unsolved subgoal
- → You can prove automation separately.

function (sequential) quicksort where

quicksort [] = [] | quicksort (x # xs) = quicksort $[y \leftarrow xs.y \le x]@[x]@$ quicksort $[y \leftarrow xs.x < y]$ by pat_completeness auto

termination

by (relation "measure length") (auto simp: less_Suc_eq_le)

function is the fully tweakable, manual version of fun

Slide 5

fun — induction principle	-
	NICTA

- → Each fun definition induces an induction principle
- ➔ For each equation:

show P holds for Ihs, provided P holds for each recursive call on rhs

→ Example sep.induct:

 $[\land a. P a [];$ $\bigwedge a w. P a [w]$ $\bigwedge a x y zs. P a (y \# zs) \Longrightarrow P a (x \# y \# zs);$ $\implies P \ a \ xs$

Δ.

Slide 7

Slide 8

How does fun/function work?

Recall primrec:

- → defined one recursion operator per datatype
- → inductive definition of its graph $(x, f x) \in G$
- → prove totality: $\forall x. \exists y. (x, y) \in G$
- → prove uniqueness: $(x, y) \in G \Rightarrow (x, z) \in G \Rightarrow y = z$

NICTA

NICTA

→ recursion operator: $rec \ x = THE \ y. \ (x, y) \in rec$

How does fun/function work?

Can separate and defer termination proof:

- → skip proof of totality
- → instead derive equations of the form: $x \in f_dom \Rightarrow f x = ...$
- → similarly, conditional induction principle
- \rightarrow f_dom = acc f_rel
- → acc = accessible part of f_rel
- → the part that can be reached in finitely many steps
- → termination = $\forall x. x \in f_dom$
- → still have conditional equations for partial functions

Slide 11

Proving Termination

Command termination fun_name sets up termination goal $\forall x. \ x \in fun_name_dom$

Three main proof methods:

- → lexicographic_order (default tried by fun)
- → size_change (different automated technique)
- → relation R (manual proof via well-founded relation)

Slide 9

How	does	fun/fur	nction	work?

Similar strategy for fun:

- \rightarrow a new inductive definition for each fun f
- \rightarrow extract recursion scheme for equations in f
- \rightarrow define graph *f_rel* inductively, encoding recursion scheme
- → prove totality (= termination)
- → prove uniqueness (automatic)
- → derive original equations from *f_rel*
- → export induction scheme from f_rel

Slide 10

NICTA

Well Founded Orders

Definition

 $<_r$ is well founded if well founded induction holds wf $r \equiv \forall P. (\forall x. (\forall y <_r x.P y) \longrightarrow P x) \longrightarrow (\forall x. P x)$

Well founded induction rule:

 $\frac{ \text{wf } r \quad \bigwedge x. \ (\forall y <_r x. \ P \ y) \Longrightarrow P \ x}{P \ a}$

NICTA

Alternative definition (equivalent):

there are no infinite descending chains, or (equivalent): every nonempty set has a minimal element wrt $<_r$

 $\begin{array}{lll} \min r \; Q \; x & \equiv & \forall y \in Q. \; y \not <_r x \\ \text{wf} \; r & = & (\forall Q \neq \{\}. \; \exists m \in Q. \; \min r \; Q \; m) \end{array}$

Slide 13

Well Founded Orders: Examples NICTA → < on N is well founded</td> well founded induction = complete induction

- $\clubsuit \ > \text{and} \le \text{on} \ \mathbb{N}$ are not well founded
- → $x <_r y = x \text{ dvd } y \land x \neq 1$ on \mathbb{N} is well founded the minimal elements are the prime numbers
- → $(a,b) <_r (x,y) = a <_1 x \lor a = x \land b <_2 y$ is well founded if $<_1$ and $<_2$ are
- → $A <_r B = A \subset B \land$ finite B is well founded
- \Rightarrow \subseteq and \subset in general are **not** well founded

More about well founded relations: Term Rewriting and All That

So far for termination. What about the recursion scheme? Not fixed anymore as in primrec.

Examples:

→ fun fib where fib 0 = 1 | fib (Suc 0) = 1 | fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) \rightsquigarrow n, Suc (Suc n) \rightsquigarrow Suc n

→ fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: $x \neq 0 \Longrightarrow x \rightsquigarrow x$ - 1

Slide 15

Extracting the Recursion Scheme

Higher Oder:

→ datatype 'a tree = Leaf 'a | Branch 'a tree list

 $\begin{array}{l} \mbox{fun treemap}:: ('a \Rightarrow 'a) \Rightarrow 'a \mbox{tree} \Rightarrow 'a \mbox{tree} \mbox{where} \\ \mbox{treemap} \ fn \ (Leaf \ n) = Leaf \ (fn \ n) \ | \\ \mbox{treemap} \ fn \ (Branch \ I) = Branch \ (map \ (treemap \ n) \ I) \ I) \end{array}$

Recursion: $x \in \text{set I} \Longrightarrow (\text{fn, Branch I}) \rightsquigarrow (\text{fn, x})$

How to extract the context information for the call?

Slide 14

Slide 18

We have seen today ...

- → General recursion with fun/function
- $\label{eq:states}$ Induction over recursive functions
- → How fun works
- → Termination, partial functions, congruence rules