

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

a = b = c = ...

- → fun, function
- → Well founded recursion

Content

		Rough timeline
→	Intro & motivation, getting started	[1]
→	Foundations & Principles	
	 Lambda Calculus, natural deduction 	[2,3,4 ^{<i>a</i>}]
	Higher Order Logic	[5,6 ^b ,7]
	Term rewriting	[8,9,10 ^{<i>c</i>}]
→	Proof & Specification Techniques	
	• Isar	[11,12 ^d]
	 Inductively defined sets, rule induction 	[13 ^e ,15]
	 Datatypes, recursion, induction 	[16,17 ^{<i>f</i>} ,18,19]
	 Calculational reasoning, mathematics style proofs 	[20]
	 Hoare logic, proofs about programs 	[21 ^g ,22,23]

^{*a*}a1 out; ^{*b*}a1 due; ^{*c*}a2 out; ^{*d*}a2 due; ^{*e*}session break; ^{*f*}a3 out; ^{*g*}a3 due

CALCULATIONAL REASONING

The Goal

$$x \cdot x^{-1} = 1 \cdot (x \cdot x^{-1})$$

... = $1 \cdot x \cdot x^{-1}$
... = $(x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1}$
... = $(x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1}$
... = $(x^{-1})^{-1} \cdot 1 \cdot x^{-1}$
... = $(x^{-1})^{-1} \cdot (1 \cdot x^{-1})$
... = $(x^{-1})^{-1} \cdot x^{-1}$
... = 1

Can we do this in Isabelle?

- → Simplifier: too eager
- → Manual: difficult in apply style
- → Isar: with the methods we know, too verbose

The Problem

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:

- → Keywords also and finally to delimit steps
- → …: predefined schematic term variable, refers to right hand side of last expression
- → Automatic use of transitivity rules to connect steps

have " $t_0 = t_1$ " [proof] also have "... = t_2 " [proof] also $"t_0 = t_2"$. also have " $\cdots = t_n$ " [proof]

finally $t_0 = t_n$

show P

— 'finally' pipes fact " $t_0 = t_n$ " into the proof

calculation register

$"t_0 = t_1"$

:
"
$$t_0 = t_{n-1}$$
"

- → Works for all combinations of =, \leq and <.
- → Uses all rules declared as [trans].
- ➔ To view all combinations in Proof General: Isabelle/Isar → Show me → Transitivity rules

have = " $l_1 \odot r_1$ " [proof] also have "... $\odot r_2$ " [proof] also

Anatomy of a [trans] rule:

- → Usual form: plain transitivity $\llbracket l_1 \odot r_1; r_1 \odot r_2 \rrbracket \Longrightarrow l_1 \odot r_2$
- → More general form: $\llbracket P \ l_1 \ r_1; Q \ r_1 \ r_2; A \rrbracket \Longrightarrow C \ l_1 \ r_2$

Examples:

- → pure transitivity: $\llbracket a = b; b = c \rrbracket \implies a = c$
- → mixed: $\llbracket a \leq b; b < c \rrbracket \implies a < c$
- → substitution: $\llbracket P \ a; a = b \rrbracket \implies P \ b$
- → antisymmetry: $\llbracket a < b; b < a \rrbracket \implies P$
- → monotonicity: $\llbracket a = f \ b; b < c; \bigwedge x \ y. \ x < y \Longrightarrow f \ x < f \ y \rrbracket \Longrightarrow a < f \ c$

We have

- → numbers, arithmetic
- → recursive datatypes
- → constant definitions, recursive functions
- → = a functional programming language
- → can be used to get fully verified programs

Executed using the simplifier. But:

- → slow, heavy-weight
- → does not run stand-alone (without Isabelle)

Generating code

Translate HOL functional programming concepts, i.e.

- → datatypes
- → function definitions
- → inductive predicates

into a stand-alone code in:

- → SML
- → Ocaml
- → Haskell
- → Scala

export_code idefinition_names; in SML
module_name <module_name> file "<file path>"

export_code definition_names in Haskell

module_name < module_name > file "<directory path>"

Takes a space-separated list of constants for which code shall be generated.

Anything else needed for those is added implicitly Generates ML stucture.

Aim: choosing appropriate code equations explicitly

Syntax:

lemma [code]:

list of equations on function_name>

Example: more efficient definition of fibonnacci function

Inductive specifications turned into equational ones

Example:

append [] ys ys $append xs ys zs \Longrightarrow append (x \# xs) ys (x \# zs)$

Syntax:

code_pred append .

We have seen today ...

- → Calculations: also/finally
- → [trans]-rules
- → Code generation