COMP 4161
 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

$\mathbf{a}=\mathbf{b}=\mathbf{c}=\ldots$

\rightarrow fun, function
\rightarrow Well founded recursion

Content

\rightarrow Intro \& motivation, getting started
\rightarrow Foundations \& Principles

- Lambda Calculus, natural deduction
- Higher Order Logic
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Isar
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Calculational reasoning, mathematics style proofs
- Hoare logic, proofs about programs
${ }^{a}$ a1 out; ${ }^{b}$ a1 due; ${ }^{c}$ a2 out; ${ }^{d}$ a2 due; ${ }^{e}$ session break; ${ }^{f}$ a3 out; ${ }^{g}$ a3 due

Calculational Reasoning

$$
\begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot 1 \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(1 \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \\
\ldots & =1
\end{aligned}
$$

Can we do this in Isabelle?

\rightarrow Simplifier: too eager
\rightarrow Manual: difficult in apply style
\rightarrow Isar: with the methods we know, too verbose

Chains of equations

The Problem

$$
\begin{aligned}
& a=b \\
& \ldots=c \\
& \ldots=d
\end{aligned}
$$

shows $a=d$ by transitivity of $=$
Each step usually nontrivial (requires own subproof)

Solution in Isar:

\rightarrow Keywords also and finally to delimit steps
\rightarrow...: predefined schematic term variable, refers to right hand side of last expression
\rightarrow Automatic use of transitivity rules to connect steps

also/finally

have " $t_{0}=t_{1}$ " [proof]
also
have "..$=t_{2}$ " [proof]
also
:
also
have $" \cdots=t_{n}$ " [proof]
finally
show P
—'finally' pipes fact " $t_{0}=t_{n}$ " into the proof
calculation register
$" t_{0}=t_{1} "$
$" t_{0}=t_{2} "$
$" t_{0}=t_{n-1} "$
$t_{0}=t_{n}$

More about also

\rightarrow Works for all combinations of $=, \leq$ and $<$.
\rightarrow Uses all rules declared as [trans].
\rightarrow To view all combinations in Proof General:
Isabelle/Isar \rightarrow Show me \rightarrow Transitivity rules

Designing [trans] Rules

```
have = " l}\mp@subsup{l}{1}{}\odot\mp@subsup{r}{1}{}"[\mathrm{ [proof]
also
have "...\odot r ' " [proof]
also
```


Anatomy of a [trans] rule:

\rightarrow Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
\rightarrow More general form: $\llbracket P l_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C l_{1} r_{2}$

Examples:

\rightarrow pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$
\rightarrow mixed: $\llbracket a \leq b ; b<c \rrbracket \Longrightarrow a<c$
\rightarrow substitution: $\llbracket P a ; a=b \rrbracket \Longrightarrow P b$
\rightarrow antisymmetry: $\llbracket a<b ; b<a \rrbracket \Longrightarrow P$
\rightarrow monotonicity: $\llbracket a=f b ; b<c ; \bigwedge x y . x<y \Longrightarrow f x<f y \rrbracket \Longrightarrow a<f c$

Demo

HOL as programming language

We have

\rightarrow numbers, arithmetic
\rightarrow recursive datatypes
\rightarrow constant definitions, recursive functions
\rightarrow = a functional programming language
\rightarrow can be used to get fully verified programs

Executed using the simplifier. But:
\rightarrow slow, heavy-weight
\rightarrow does not run stand-alone (without Isabelle)

Generating code

Translate HOL functional programming concepts, i.e.
\rightarrow datatypes
\rightarrow function definitions
\rightarrow inductive predicates
into a stand-alone code in:
\rightarrow SML
\rightarrow Ocaml
\rightarrow Haskell
\rightarrow Scala

Syntax

export_code ¡definition_names $¿$ in SML module_name $<$ module_name $>$ file " $<$ file path $>$ "
export_code definition_names in Haskell module_name $<$ module_name $>$ file " $<$ directory path $>$ "

Takes a space-separated list of constants for which code shall be generated.

Anything else needed for those is added implicitly Generates ML stucture.

Demo

Program Refinement

Aim: choosing appropriate code equations explicitly

Syntax:
lemma [code]:
<list of equations on function_name>
Example: more efficient definition of fibonnacci function

Demo

Inductive Predicates

Inductive specifications turned into equational ones

Example:

```
append [] ys ys
append xs ys zs \Longrightarrow append (x # xs ) ys (x # zs )
```

Syntax:
code_pred append.

Demo

We have seen today ...

\rightarrow Calculations: also/finally
\rightarrow [trans]-rules
\rightarrow Code generation

