
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

a = b = c = . . .

1



Last time ...

➜ fun, function

➜ Well founded recursion

2



Content

Rough timeline

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [2,3,4a]

• Higher Order Logic [5,6b,7]

• Term rewriting [8,9,10c]

➜ Proof & Specification Techniques

• Isar [11,12d]

• Inductively defined sets, rule induction [13e,15]

• Datatypes, recursion, induction [16,17f ,18,19]

• Calculational reasoning, mathematics style proofs [20]

• Hoare logic, proofs about programs [21g,22,23]

aa1 out; ba1 due; ca2 out; da2 due; esession break; fa3 out; ga3 due

3



CALCULATIONAL REASONING

4



The Goal

x · x−1 = 1 · (x · x−1)

. . . = 1 · x · x−1

. . . = (x−1)−1
· x−1

· x · x−1

. . . = (x−1)−1
· (x−1

· x) · x−1

. . . = (x−1)−1
· 1 · x−1

. . . = (x−1)−1
· (1 · x−1)

. . . = (x−1)−1
· x−1

. . . = 1

Can we do this in Isabelle?

➜ Simplifier: too eager

➜ Manual: difficult in apply style

➜ Isar: with the methods we know, too verbose

5



Chains of equations

The Problem

a = b

. . . = c

. . . = d

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:

➜ Keywords also and finally to delimit steps

➜ . . . : predefined schematic term variable,

refers to right hand side of last expression

➜ Automatic use of transitivity rules to connect steps

6



also/finally

have ”t0 = t1” [proof] calculation register

also ”t0 = t1”

have ”. . . = t2” [proof]

also ”t0 = t2”
...

...

also ”t0 = tn−1”

have ”· · · = tn” [proof]

finally t0 = tn

show P

— ’finally’ pipes fact ”t0 = tn” into the proof

7



More about also

➜ Works for all combinations of =, ≤ and <.

➜ Uses all rules declared as [trans].

➜ To view all combinations in Proof General:

Isabelle/Isar → Show me → Transitivity rules

8



Designing [trans] Rules

have = ”l1 ⊙ r1” [proof]

also
have ”. . .⊙ r2” [proof]

also

Anatomy of a [trans] rule:

➜ Usual form: plain transitivity [[l1 ⊙ r1; r1 ⊙ r2]] =⇒ l1 ⊙ r2

➜ More general form: [[P l1 r1;Q r1 r2;A]] =⇒ C l1 r2

Examples:

➜ pure transitivity: [[a = b; b = c]] =⇒ a = c

➜ mixed: [[a ≤ b; b < c]] =⇒ a < c

➜ substitution: [[P a; a = b]] =⇒ P b

➜ antisymmetry: [[a < b; b < a]] =⇒ P

➜ monotonicity: [[a = f b; b < c;
∧

x y. x < y =⇒ f x < f y]] =⇒ a < f c

9



DEMO

10



HOL as programming language

We have

➜ numbers, arithmetic

➜ recursive datatypes

➜ constant definitions, recursive functions

➜ = a functional programming language

➜ can be used to get fully verified programs

Executed using the simplifier. But:

➜ slow, heavy-weight

➜ does not run stand-alone (without Isabelle)

11



Generating code

Translate HOL functional programming concepts, i.e.

➜ datatypes

➜ function definitions

➜ inductive predicates

into a stand-alone code in:

➜ SML

➜ Ocaml

➜ Haskell

➜ Scala

12



Syntax

export code ¡definition names¿ in SML

module name <module name> file “<file path>”

export code definition names in Haskell

module name <module name> file “<directory path>”

Takes a space-separated list of constants for which code shall be generated.

Anything else needed for those is added implicitly Generates ML stucture.

13



DEMO

14



Program Refinement

Aim: choosing appropriate code equations explicitly

Syntax:

lemma [code] :

<list of equations on function name>

Example: more efficient definition of fibonnacci function

15



DEMO

16



Inductive Predicates

Inductive specifications turned into equational ones

Example:

append [] ys ys

append xs ys zs =⇒ append (x # xs ) ys (x # zs )

Syntax:

code pred append .

17



DEMO

18



We have seen today ...

➜ Calculations: also/finally

➜ [trans]-rules

➜ Code generation

19


