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Last Time

➜ Verifying C by translating into Simpl

➜ Expressions

➜ C control flow

➜ Exceptions with Hoare logic rules

➜ C functions and procedures with Hoare logic rules
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Content

Rough timeline

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [2,3,4a]

• Higher Order Logic [5,6b,7]

• Term rewriting [8,9,10c]

➜ Proof & Specification Techniques

• Isar [11,12d]

• Inductively defined sets, rule induction [13e,15]

• Datatypes, recursion, induction [16,17f ,18,19]

• Calculational reasoning, mathematics style proofs [20]

• Hoare logic, proofs about programs [21g ,22,23]

aa1 out; ba1 due; ca2 out; da2 due; esession break; fa3 out; ga3 due
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C

Main new problems in verifying C programs:

➜ expressions with side effects

➜ more control flow (do/while, for, break, continue, return)

➜ local variables and blocks

➜ functions & procedures

➜ prevent undefined execution

➜ concrete C data types

➜ C memory model and C pointers
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Undefined Execution

In C, we’re not allowed to:

➜ divide by zero

➜ shift more than <architecture defined> bits

➜ dereference a Null pointer

➜ access outside array bounds

➜ access unallocated memory

➜ free unallocated memory

➜ . . .

Their absence should become proof obligations.
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Simpl Guards

Syntax:

Guard ’f "’s bexp" "(’s,’p,’f) com"

Semantics:

[| s ∈ g; Γ ⊢ (c,Normal s) ⇒ t|] =⇒ Γ ⊢ (Guard f g c,Normal s) ⇒ t

s /∈ g =⇒ Γ ⊢ (Guard f g c,Normal s) ⇒ Faultf

Hoare rules:

Γ ⊢F {g ∧ P} c {Q}

Γ ⊢F {g ∧ P} Guard f g c {Q}

f ∈ F Γ ⊢F {g ∧ P} c {Q}

Γ ⊢F {P} Guard f g c {Q}
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Simpl Guards: Why two Hoare rules?

Why two Hoare rules?

So we can separate out verification of guards.

F controls which guards are currently assumed and which are proved.

Example:

Do automated verification of array guards separately
⇒ get to assume array guards ”for free” in the rest.
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Simpl Guards: Why two Hoare rules?

Use Guards for:
Every time an expression or statement does something potentially undefined,
add a guard in the translation.

Example:

x = a / b ⇒ Guard DivByZero (b 6= 0) (x :== a / b)
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DEMO: GUARDS
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C data types

Next problem: C data types

C has the following types:

➜ basic: int (long/short, signed/unsigned), char, void, float, double, long double

➜ enum types

➜ pointers: type*

➜ array types: type[n], type[n][m], type[]

➜ struct types: like records, but can use recursion for pointers

➜ unions: multiple interpretations of same memory content

➜ function pointers

Size of basic types is architecture dependent.
Encoding in memory partially compiler dependent.
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Basic types

➜ float/double ⇒ IEEE floating point numbers, no Isabelle formalisation yet.

(Any takers?)

➜ void ⇒ unit type in Isabelle

➜ integer types ⇒ finite machine words (x mod 2
32 etc)

Why bother with finite words? Why not nat/real?

Want to model overflow precisely.

Depending on application, could work with nat and guards instead.
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Binary Search (java.util.Arrays)

1: public static int binarySearch(int[] a, int key) {

2: int low = 0;

3: int high = a.length - 1;

4:

5: while (low <= high) {

6: int mid = (low + high) / 2;

7: int midVal = a[mid];

8:

9: if (midVal < key)

10: low = mid + 1

11: else if (midVal > key)

12: high = mid - 1;

13: else

14: return mid; // key found

15: }

16: return -(low + 1); // key not found.

17: }

6: int mid = (low + high) / 2;

http://googleresearch.blogspot.com/2006/06/

extra-extra-read-all-about-it-nearly.html
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Machine Words

Goal: want to write things like

x && y = 0 =⇒ x + y = x || y

(x << n) !! m = x !! (n + m)

x << 2 = 4 * x ucast (y + 0xFF21) = (x - 0b01001011)

unat x + unat y < 2ˆ word size =⇒ unat (x + y) = unat x + unat y

x :: 32 word y :: 8 word z :: n word

&& bitwise and, || bitwise or, !! test bit at position n, << shift left,

”ucast” cast between word sizes, ”unat” convert words to nat
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Formalisation Idea

Goal:
Create an Isabelle type that captures machine words of length n

Problem:
The parameter n is not a type, but a value.
This is called a dependent type .
Isabelle does not support dependent types.

Solutions: make a type ’a word, encode length in type ’a

➜ either implicitly as number of elements in ’a,

➜ or explicitly via type class function
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Formalisation in Isabelle

Type class used in HOL/Word/Word.thy:

➜ ’a must be class len

➜ class len has function len of :: ’a itself ⇒ nat

➜ to implement class len, a type must provide that function

’a itself:

➜ ’a itself is a type with one element of type ’a

➜ the one element is written TYPE(’a)

Numeric types in Library/Numeral Type.thy:

➜ create types written as numbers (type 1, 16, etc)

➜ have 1, 16, etc elements

➜ the numbers are syntax for type constructors encoding 0, 1, 2*n, 2*n+1

Slide 15

Representation (no taxation)

Now can encode length. How do we represent words?

Options:

➜ nat mod 2ˆ n

➜ int mod 2ˆ n

➜ bool lists of length n

➜ test-bit functions nat ⇒ bool

All of these are equivalent. Actual definition in Isabelle is int mod 2ˆ n.

All others are provided as well as simulated type defs.
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Operators

Rest is standard (see HOL/Word/Word.thy + HOL/Word/Examples/):

➜ define standard arithmetic and bit-wise operators with syntax

➜ prove lemmas connecting to known type representations

➜ determine abstract structure:
commutative ring with 1, partial order, boolean algebra for bitwise ops, etc

➜ prove library with characteristic properties

➜ provide some automation: smt connection, auto cast to nat

➜ . . .

➜ profit
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DEMO: WORD
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C Data types

Can now represent all C types apart from float.
(Making explicit architecture assumptions on size etc.)

➜ integer types (incl enum): word

➜ pointers: datatype ’a ptr = 32 word

➜ arrays: pointers or array types in Isabelle

➜ structs: records or data types

➜ unions: separate struct types with conversions

➜ function pointers: word

Missing: modelling C memory
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C Memory Model

Heap models so far:

➜ addr ⇒ obj option

➜ separate heaps by type

➜ separate heaps by record field

C is more ugly:

➜ pointer arithmetic and casting breaks type safety

➜ objects could overlap

➜ objects can be access under different types (union)

➜ systems programmers might rely on data layout (device access)

➜ could have pointers into stack (reference to local var)

Our model solves all but the last one.

(Can also solve that one, but it gets even more ugly.)
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C Memory Model

The Memory Model:
Heap = function ”32 word ⇒ 8 word”

That it’s.
Ok, not quite: It’s the basis. We build a whole machinery on to p.

Basic idea:

➜ 32 word ⇒ 8 word is the information that C runtime has

➜ we store additional type information for proofs (ghost state)

➜ use that type information to automatically get abstract Isabelle objects from heap

➜ if we stay in type-safe fragment of C, can reason like in separate heaps.
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C Memory Model Diagram (1)

➜ basic function ”32 word ⇒ 8 word”

➜ additional type information for regions of memory

byte int
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C Memory Model Diagram (2)

7F 10 32 A0

q

32A07F10*q:

7F

10

32

A0

from-bytes

to-bytes

32A07F10

size-of TYPE (int)
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Encoding Type Information

Another type class:
➜ for Isabelle types ’a that represent C types
➜ from-bytes :: 8 word list ⇒ ’a option
➜ to-bytes :: ’a ⇒ 8 word list
➜ size-of :: ’a itself ⇒ nat
➜ tag :: ’a itself ⇒ typ-tag

7F

10

32

A0

from-bytes

to-bytes

32A07F10

size-of TYPE (int)

Laws:

➜ from-bytes (to-bytes v) = Some v

➜ length (to-bytes (v::’a)) = size-of TYPE(’a)

Example picture unsigned int = 32 word (depending on architecture):

➜ from-bytes/to-bytes = big/little endian encoding (depending on architecture)

➜ size-of = 4

➜ tag = ”32 word”
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Encoding Type Information

7F 10 32 A0

q

32A07F10*q:

7F

10

32

A0

from-bytes

to-bytes

32A07F10

size-of TYPE (int)

Can now define
heap access/update

generically for ’a!
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C Memory Model Diagram (3)

Goal:

byte

int

short

heap
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Separate Heaps

Plan:

➜ combine type info and real heap into one object typed-hp

➜ write ’view’ function lift :: typed-hp ⇒ (’a ptr ⇒ ’a option)

➜ models type-safe heap access

➜ returns None if request type ’a does not match type in memory
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C Memory Model Diagram (4)

0 0A FF 7F 10 32 A0 FF FFheap

byte

int

short

lift-typ-heap

7F 10 32 A0FF0A

typ-desc

0 FF FFheap-state

lift-state
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Separate Heaps Properties

Lemmas about lift and heap-update:

If lift hp (p :: ’a ptr) 6= None, then

➜ lift′a (heap-update p v hp) = (lift′a hp) (p 7→ v)

➜ TYPE(’a) ⊥ TYPE(’b) =⇒ lift′b (heap-update p v hp) = lift ′b

where TYPE(’a) ⊥ TYPE(’b) = the two types are disjoint.

This means ’lift’ works like a separate heap for each type!
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DEMO: POINTERS
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DEMO: C PROGRAM TRANSLATION
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We have seen today ...

➜ preventing undefined execution

➜ finite machine words

➜ concrete C data types

➜ C memory model and pointers
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