
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

type classes & locales

1



Last Time

➜ more C verification

➜ preventing undefined execution

➜ finite machine words

➜ concrete C data types

➜ C memory model and pointers

2



Content

Rough timeline

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [2,3,4a]

• Higher Order Logic [5,6b,7]

• Term rewriting [8,9,10c]

➜ Proof & Specification Techniques

• Isar [11,12d]

• Inductively defined sets, rule induction [13e,15]

• Datatypes, recursion, induction [16,17f ,18,19]

• Calculational reasoning, mathematics style proofs [20]

• Hoare logic, proofs about programs [21g,22,23]

aa1 out; ba1 due; ca2 out; da2 due; esession break; fa3 out; ga3 due

3



Type Classes

Common pattern in Mathematics:

➜ Define abstract structures (semigroup, group, ring, field, etc)

➜ Study and derive properties in these structures

➜ Instantiate to concrete structure: (nats with + and * from a ring)

➜ Can use all abstract laws for concrete structure

Type classes in functional languages:

➜ Declare a set of functions with signatures (e.g. plus, zero)

➜ give them a name (e.g. c)

➜ Have syntax ’a :: c for: type ’a supports the operations of c

➜ Can write abstract polymorphic functions that use plus and zero

➜ Can instantiate specific types like nat to c

Isabelle supports both.

4



Type Class Example

Example:

class semigroup =

fixes mult :: ’a ⇒ ’a ⇒ ’a (infix · 70)

assumes assoc: (x · y) · z = x · (y · z)

Declares:

➜ a name (semigroup)

➜ a set of operations (fixes mult)

➜ a set of properties/axioms (assumes assoc)

5



Type Class Use

Can constrain type variables ’a with a class:

definition sq :: (’a :: semigroup) ⇒ ’a where sq x ≡ x · x

More than one constraint allowed. Sets of class constraints are called sort .

Can reason abstractly:

lemma ”sq x · sq x = x · x · x · x”

Can instantiate:
instantiation nat :: semigroup

begin

definition ”(x::nat) · y = x * y”

instance < proof >

end

6



DEMO: TYPE CLASSES

7



Type constructors

Basic type instantiation is a special case.

In general:
Type constructors can be seen as functions from classes to classes.

Example:
product type prod :: (semigroup, semigroup) semigroup
(or: pairs of semigroup elements again form a semigroup)

Declarations such as (semigroup, semigroup) semigroup are called arities .

Fully integrated with automatic type inference.

8



Subclasses

Type classes can be extended:

class rmonoid = semigroup +

fixes one :: ’a

assumes x · one = x

rmonoid is a subclass of semigroup

Has all operations & assumptions of semigroup + additional ones.

Can build hierarchies of abstract structures.

9



More Subclasses

Example structure:

semigroup rmonoid

monoid

com_monoid

Can prove: every com monoid is also a monoid.

Can tell Isabelle that connection:

subclass (in com monoid) monoid < proof >

10



Result

Result:

semigroup rmonoid

monoid

com_monoid

11



Limitations

Operations (fixes) are implemented by overloading

➜ each type constructor can implement each operation only once

Type inference must remain automatic, with unique most gene ral types

➜ type classes can mention only one type variable

➜ type constructor arities must be co-regular:

K :: (c1, ..., cn)c and K :: (c′1, ..., c
′

n)c
′

and c ⊆ c′ =⇒ ∀i. ci ⊆ c′i

12



DEMO: SUBCLASSES

13



Isar Is Based On Contexts

theorem
∧
x. A =⇒ C

proof -

fix x

assume Ass: A
... x and Ass are visible

from Ass show C . . . inside this context

qed

14



Beyond Isar Contexts

Locales are extended contexts, look similar to type classes

➜ Locales are named

➜ Fixed variables may have syntax

➜ It is possible to add and export theorems

➜ It is possible to instantiate locales

➜ Locale expression: combine and modify locales

➜ No limitation on type variables

➜ Term level, not type level: no automatic inference

15



Context Elements

Locales consist of context elements .

fixes Parameter, with syntax

assumes Assumption

defines Definition

notes Record a theorem

16



Declaring Locales

Declaring locale (named context) loc:

locale loc =

loc1 + Import

fixes . . . Context elements

assumes . . .

17



Declaring Locales

Theorems may be stated relative to a named locale.

lemma (in loc) P [simp]: proposition

proof

or

context loc begin

lemma P [simp]: proposition

proof

end

➜ Adds theorem P to context loc.

➜ Theorem P is in the simpset in context loc.

➜ Exported theorem loc.P visible in the entire theory.

18



DEMO: L OCALES 1

19



Parameters Must Be Consistent!

➜ Parameters in fixes are distinct.

➜ Free variables in defines occur in preceding fixes .

➜ Defined parameters cannot occur in preceding assumes nor defines .

20



Locale Expressions

Locale name: n

Rename: n : e q1 . . . qn

Change names of parameters in e,

Give new locale the name prefix n (optional)

Merge: e1 + e2

Context elements of e1, then e2.

21



DEMO: L OCALES 2

22



Normal Form of Locale Expressions

Locale expressions are converted to flattened lists of locale names.

➜ With full parameter lists

➜ Duplicates removed

Allows for multiple inheritance !

23



Instantiation

Move from abstract to concrete .

interpretation label: loc ”parameter 1” . . . ”parameter n”

➜ Instantiates locale loc with provided parameters.

➜ Imports all theorems of loc into current context.

• Instantiates theorems with provided parameters.

• Interprets attributes of theorems.

• Prefixes theorem names with label

➜ version for local Isar proof: interpret

24



Sublocales

Similar to type classes:

sublocale (in sub loc) parent loc < proof >

makes facts of parent loc available in sub loc.

25



DEMO: L OCALES 3

26



We have seen today ...

➜ Type Classes + Instantiation

➜ Locale Declarations + Theorems in Locales

➜ Locale Expressions + Inheritance

➜ Locale Instantiation

27


