COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification
Toby Murray, June Andronick, Gerwin Klein

Slide 1

Content

- Intro & motivation, getting started [1]
- Foundations & Principles
 - Lambda Calculus, natural deduction [1,2]
 - Higher Order Logic [3,4]
 - Term rewriting [4]
- Proof & Specification Techniques
 - Inductively defined sets, rule induction [5]
 - Datatypes, recursion, induction [6, 7]
 - Hoare logic, proofs about programs, C verification [8, 9]
 - (mid-semester break)
- Writing Automated Proof Methods [10]

*a1 due, *a2 due, *a3 due

Last Time

- Equations and Term Rewriting
- Confluence and Termination of reduction systems
- Term Rewriting in Isabelle

Slide 2

Applying a Rewrite Rule

- \(l \rightarrow r \) applicable to term \(t[s] \)
 - if there is substitution \(\sigma \) such that \(\sigma l = s \)
- Result: \(t[\sigma r] \)
- Equationally: \(t[s] = t[\sigma r] \)

Example:

Rule: \(0 + n \rightarrow n \)

Term: \(a + (0 + (b + c)) \)

Substitution: \(\sigma = \{ n \mapsto b + c \} \)

Result: \(a + (b + c) \)
Conditional Term Rewriting

Rewrite rules can be conditional:

\[[P_1 \ldots P_n] \Rightarrow l = r \]

is applicable to term \(t|\sigma \) with \(\sigma \) if

\[\sigma l = s \quad \text{and} \quad \sigma P_1, \ldots, \sigma P_n \] are provable by rewriting.

Preprocessing

Preprocessing (recursive) for maximal simplification power:

\[\neg A \Rightarrow A = False \]
\[A \Rightarrow B \Rightarrow A \Rightarrow B \]
\[A \land B \Rightarrow A, B \]
\[\forall x. A x \Rightarrow A ? x \]
\[A \Rightarrow A = True \]

Example:

\[(p \Rightarrow q \land \neg r) \land s \]
\[\Rightarrow \]
\[p = q = True \quad p = r = False \quad s = True. \]

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

\[\text{lemma} \ "f x = g x \land g x = f x \Rightarrow f x = 2" \]

\[\text{simp} \quad \text{use and simplify assumptions} \]
\[\text{(simp (no_asm))} \quad \text{ignore assumptions} \]
\[\text{(simp (no_asm_use))} \quad \text{simplify, but do not use assumptions} \]
\[\text{(simp (no_asm_simp))} \quad \text{use, but do not simplify assumptions} \]

Copyright NICTA 2014, provided under Creative Commons Attribution License
Case splitting with simp

\[P \text{ (if } A \text{ then } s \text{ else } t) = (A \rightarrow P s) \land (\neg A \rightarrow P t) \]

Automatic

\[P \text{ (case } c \text{ of } 0 \Rightarrow a \mid \text{Suc } n \Rightarrow b) = (c = 0 \rightarrow P a) \land (\forall n. c = \text{Suc } n \rightarrow P b) \]

Manually: apply (simp split: nat.split)

Similar for any data type \(t \): \(t \cdot \text{split} \)

Slide 9

Congruence Rules

Congruence rules are about using context

Example: in \(P \rightarrow Q \) we could use \(P \) to simplify terms in \(Q \)

For \(\Rightarrow \) hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: \[[P = P'; P' \rightarrow Q = Q'] \Rightarrow (P \rightarrow Q) = (P' \rightarrow Q') \]

Read: to simplify \(P \rightarrow Q \)

\(\Rightarrow \) first simplify \(P \) to \(P' \)
\(\Rightarrow \) then simplify \(Q \) to \(Q' \) using \(P' \) as assumption
\(\Rightarrow \) the result is \(P' \rightarrow Q' \)

Slide 10

More Congruence

Sometimes useful, but not used automatically (slowdown):

\(\text{cong} \): \[[P = P'; P' \rightarrow Q = Q'] \Rightarrow (P \rightarrow Q) = (P' \rightarrow Q') \]

Context for if-then-else:

\(\text{if_cong} \): \[b = c \Rightarrow x = v; \neg c \Rightarrow y = v \Rightarrow (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y) \]

Prevent rewriting inside then-else (default):

\(\text{if_weak_cong} \): \[b = c \Rightarrow (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y) \]

\(\Rightarrow \) declare own congruence rules with [cong] attribute

\(\Rightarrow \) delete with [cong del]

\(\Rightarrow \) use locally with e.g. apply (simp cong: \(<\text{rule}>\))

Slide 11

Ordered rewriting

Problem: \(x + y \rightarrow y + x \) does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: \(b + a \sim a + b \) but not \(a + b \sim b + a \).

For types nat, int etc:

- lemmas \(\text{add_ac} \) sort any sum (\(+ \))
- lemmas \(\text{times_ac} \) sort any product (\(\ast \))

Example: apply (simp add: \(\text{add_ac} \)) yields \((b + c) + a \sim \cdots \sim a + (b + c) \)

Slide 12
AC Rules

Example for associative-commutative rules:

Associative:
\((x \odot y) \odot z = x \odot (y \odot z)\)

Commutative:
\(x \odot y = y \odot x\)

These 2 rules alone get stuck too early (not confluent).

Example:
\((z \odot x) \odot (y \odot v)\)

We want:
\((z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))\)

We get:
\((z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))\)

We need: AC rule \(x \odot (y \odot z) = y \odot (x \odot z)\)

If these 3 rules are present for an AC operator Isabelle will order terms correctly

Back to Confluence

Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!

Problem: overlapping lhs of rules.

Definition:

Let \(I_1 \rightarrow r_1\) and \(I_2 \rightarrow r_2\) be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of \(I_1\) unifies with \(I_2\).

Example:

Rules: (1) \(f x \rightarrow a\) (2) \(g y \rightarrow b\) (3) \(f (g z) \rightarrow b\)

Critical pairs:

\((1)+(3)\) \(\{ x \mapsto g z \}\) \(a \xrightarrow{(1)} f (g z) \xrightarrow{(3)} b\)

\((3)+(2)\) \(\{ z \mapsto y \}\) \(b \xrightarrow{(3)} f (g y) \xrightarrow{(5)} f b\)

Completion

\((1) f x \rightarrow a\) (2) \(g y \rightarrow b\) (3) \(f (g z) \rightarrow b\)

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

\((1)+(3)\) \(\{ x \mapsto g z \}\) \(a \xrightarrow{(1)} f (g z) \xrightarrow{(3)} b\)

shows that \(a = b\) (because \(a \xrightarrow{(1)} b\)), so we add \(a \rightarrow b\) as a rule

This is the main idea of the Knuth-Bendix completion algorithm.
Orthogonal Rewriting Systems

Definitions:
A rule \(l \rightarrow r \) is left-linear if no variable occurs twice in \(l \).
A rewrite system is left-linear if all rules are.
A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

We have learned today ...

- Conditional term rewriting
- Congruence rules
- AC rules
- More on confluence

DEMO: WALDMEISTER