

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Christine Rizkallah

Last time...

- → λ calculus syntax
- → free variables, substitution
- $\rightarrow \beta$ reduction
- $\rightarrow \alpha$ and η conversion
- $\rightarrow \beta$ reduction is confluent
- → λ calculus is expressive (turing complete)
- $ightharpoonup \lambda$ calculus is inconsistent (as a logic)

Content

	NICIA
→ Intro & motivation, getting started	[1]
 → Foundations & Principles Lambda Calculus, natural deduction → Higher Order Logic ▶ Term rewriting 	[1,2] [3°] [4]

→ Proof & Specification Techniques

·	
Inductively defined sets, rule induction	[5]
Datatypes, recursion, induction	[6, 7]
Hoare logic, proofs about programs, C verification	$[8^{b},9]$
(mid-semester break)	

Writing Automated Proof Methods [10]

Isar, codegen, typeclasses, locales $[11^c, 12]$

^aa1 due; ^ba2 due; ^ca3 due

λ calculus is inconsistent

Can find term R such that $R R =_{\beta} not(R R)$

There are more terms that do not make sense: 12, true false, etc.

Solution: rule out ill-formed terms by using types. (Church 1940)

Introducing types

Idea: assign a type to each "sensible" λ term.

Examples:

- \rightarrow for term t has type α write $t :: \alpha$
- ightharpoonup if x has type α then $\lambda x. x$ is a function from α to α Write: $(\lambda x. x) :: \alpha \Rightarrow \alpha$
- → for s t to be sensible: s must be a function t must be right type for parameter

```
If s :: \alpha \Rightarrow \beta and t :: \alpha then (s t) :: \beta
```


THAT'S ABOUT IT

Now formally again

Syntax for λ^{\rightarrow}

Terms:
$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$

$$v, x \in V, \quad c \in C, \quad V, C \text{ sets of names}$$

Types:
$$\tau := b \mid \nu \mid \tau \Rightarrow \tau$$

 $b \in \{bool, int, ...\}$ base types $\nu \in \{\alpha, \beta, ...\}$ type variables

$$\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$$

Context Γ:

Γ: function from variable and constant names to types.

Term t has type τ in context Γ : $\Gamma \vdash t :: \tau$

Examples

$$\Gamma \vdash (\lambda x. x) :: \alpha \Rightarrow \alpha$$
 $[y \leftarrow \text{int}] \vdash y :: \text{int}$

$$[z \leftarrow \mathtt{bool}] \vdash (\lambda y.\ y)\ z :: \mathtt{bool}$$

$$[] \vdash \lambda f \ x. \ f \ x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta$$

A term t is **well typed** or **type correct** if there are Γ and τ such that $\Gamma \vdash t :: \tau$

Type Checking Rules

Variables:
$$\overline{\Gamma \vdash x :: \Gamma(x)}$$

Application:
$$\frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau}$$

Abstraction:
$$\frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau}$$

Example Type Derivation:

$$\frac{[x \leftarrow \alpha, y \leftarrow \beta] \vdash x :: \alpha}{[x \leftarrow \alpha] \vdash \lambda y. x :: \beta \Rightarrow \alpha}$$
$$[] \vdash \lambda x \ y. \ x :: \alpha \Rightarrow \beta \Rightarrow \alpha$$

More complex Example

$$\frac{\Gamma \vdash f :: \alpha \Rightarrow (\alpha \Rightarrow \beta) \quad \overline{\Gamma \vdash x :: \alpha}}{\Gamma \vdash f x :: \alpha \Rightarrow \beta \qquad \overline{\Gamma \vdash x :: \alpha}}$$

$$\frac{\Gamma \vdash f x x :: \beta}{\Gamma \vdash f x x :: \beta}$$

$$[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. f x x :: \alpha \Rightarrow \beta$$

$$[] \vdash \lambda f x. f x x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta$$

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

More general Types

A term can have more than one type.

Example:
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool \\ [] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$$

Some types are more general than others:

$$au \lesssim \sigma$$
 if there is a substitution S such that $au = S(\sigma)$

Examples:

$$int \Rightarrow bool \leq \alpha \Rightarrow \beta \leq \beta \Rightarrow \alpha \leq \alpha \Rightarrow \alpha$$

Most general Types

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \quad \Longrightarrow \quad \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

- **→ type checking:** checking if $\Gamma \vdash t :: \tau$ for given Γ and τ
- **→ type inference:** computing Γ and τ such that $\Gamma \vdash t :: \tau$

Type checking and type inference on λ^{\rightarrow} are decidable.

What about β reduction?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: $\Gamma \vdash s :: \tau \land s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t :: \tau$

This property is called **subject reduction**

What about termination?

β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)

- \Rightarrow =_{\beta} is decidable

 To decide if $s =_{\beta} t$, reduce s and t to normal form (always exists, because \longrightarrow_{eta} terminates), and compare result.
- $\Rightarrow =_{\alpha\beta\eta}$ is decidable

 This is why Isabelle can automatically reduce each term to $\beta\eta$ normal form.

What does this mean for Expressiveness?

Not all computable functions can be expressed in λ^{\rightarrow} !

How can typed functional languages then be turing complete?

Fact:

Each computable function can be encoded as closed, type correct λ^{\rightarrow} term using $Y :: (\tau \Rightarrow \tau) \Rightarrow \tau$ with $Y \ t \longrightarrow_{\beta} t \ (Y \ t)$ as only constant.

- → Y is called fix point operator
- → used for recursion
- → lose decidability (what does $Y(\lambda x. x)$ reduce to?)
- → (Isabelle/HOL doesn't have Y; it supports more restricted forms of recursion)

Types and Terms in Isabelle


```
Types: \tau ::= b \mid {}'\nu \mid {}'\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, \ldots, \tau) \text{ } K b \in \{\text{bool}, \text{int}, \ldots\} \text{ base types} \nu \in \{\alpha, \beta, \ldots\} \text{ type variables} K \in \{\text{set}, \text{list}, \ldots\} \text{ type constructors} C \in \{\text{order}, \text{linord}, \ldots\} \text{ type classes}
```

Terms:
$$t ::= v \mid c \mid ?v \mid (t \ t) \mid (\lambda x. \ t)$$

 $v, x \in V, c \in C, V, C \text{ sets of names}$

- → type constructors: construct a new type out of a parameter type. Example: int list
- → type classes: restrict type variables to a class defined by axioms. Example: α :: order
- → schematic variables: variables that can be instantiated.

Type Classes

→ similar to Haskell's type classes, but with semantic properties class order =

```
assumes order_refl: "x \le x"
assumes order_trans: "[x \le y; y \le z] \Longrightarrow x \le z"
...
```

→ theorems can be proved in the abstract

lemma order_less_trans:

"
$$\bigwedge x ::'a :: order. \llbracket x < y; y < z \rrbracket \Longrightarrow x < z$$
"

→ can be used for subtyping

class linorder = order +

assumes linorder_linear: " $x \le y \lor y \le x$ "

→ can be instantiated

instance nat :: "{order, linorder}" by ...

Schematic Variables

$$\frac{X}{X \wedge Y}$$

→ X and Y must be **instantiated** to apply the rule

But: lemma "
$$x + 0 = 0 + x$$
"

- → x is free
- → convention: lemma must be true for all x
- → during the proof, x must not be instantiated

Solution:

Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Higher Order Unification

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples:

$$\begin{array}{lll} ?X \wedge ?Y &=_{\alpha\beta\eta} & x \wedge x & [?X \leftarrow x, ?Y \leftarrow x] \\ ?P & &=_{\alpha\beta\eta} & x \wedge x & [?P \leftarrow \lambda x. \ x \wedge x] \\ P \ (?f \ x) &=_{\alpha\beta\eta} & ?Y \ x & [?f \leftarrow \lambda x. \ x, ?Y \leftarrow P] \end{array}$$

Higher Order: schematic variables can be functions.

Higher Order Unification

- ightharpoonup Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- \rightarrow Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

- → Most cases are well-behaved
- → Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

- \rightarrow is a term in β normal form where
- \rightarrow each occurrence of a schematic variable is of the form ? f $t_1 \ldots t_n$
- \rightarrow and the $t_1 \ldots t_n$ are η -convertible into n distinct bound variables

We have learned so far...

- → Simply typed lambda calculus: λ[→]
- **→** Typing rules for λ^{\rightarrow} , type variables, type contexts
- → β -reduction in λ [→] satisfies subject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates
- → Types and terms in Isabelle