

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Christine Rizkallah

Last time...

- \rightarrow natural deduction rules for \land , \lor , \longrightarrow , \neg , iff...
- → proof by assumption, by intro rule, elim rule
- → safe and unsafe rules

Content

	NICIA
→ Intro & motivation, getting started	[1]
 → Foundations & Principles Lambda Calculus, natural deduction → Higher Order Logic ▶ Term rewriting 	[1,2] [3°] [4]

→ Proof & Specification Techniques

·	
Inductively defined sets, rule induction	[5]
Datatypes, recursion, induction	[6, 7]
Hoare logic, proofs about programs, C verification	$[8^{b},9]$
(mid-semester break)	

Writing Automated Proof Methods [10]

Isar, codegen, typeclasses, locales $[11^c, 12]$

^aa1 due; ^ba2 due; ^ca3 due

QUANTIFIERS

Scope

- Scope of parameters: whole subgoal
- ▶ Scope of \forall , \exists , . . .: ends with ; or \Longrightarrow

Example:

Natural deduction for quantifiers

$$\frac{\bigwedge x. \ P \ x}{\forall x. \ P \ x} \text{ all} \qquad \frac{\forall x. \ P \ x}{R} \Rightarrow R \text{ all}$$

$$\frac{P \ ?x}{\exists x. \ P \ x} \text{ exl} \qquad \frac{\exists x. \ P \ x}{R} \Rightarrow R \text{ exE}$$

- ▶ **allI** and **exE** introduce new parameters $(\land x)$.
- ▶ allE and exl introduce new unknowns (?x).

Instantiating Rules

Like **rule**, but ?x in *rule* is instantiated by *term* before application.

Similar: erule_tac

x is in rule, not in goal

Two Successful Proofs

1.
$$\forall x$$
. $\exists y$. $x = y$

apply (rule allI)

1.
$$\bigwedge x$$
. $\exists y$. $x = y$

best practice

exploration

apply (rule_tac x = "x" in exl)

apply (rule exl)

1. $\bigwedge x$. x = x

1. $\bigwedge x$. x = ?y x

apply (rule refl)

apply (rule refl)

 $?y \mapsto \lambda u.u$

simpler & clearer

shorter & trickier

Two Unsuccessful Proofs

1.
$$\exists y. \ \forall x. \ x = y$$

1.
$$\forall x. \ x = ?y$$

apply (rule allI)

1.
$$\bigwedge x$$
. $x = ?y$

apply (rule refl)

$$?y \mapsto x \text{ yields } \bigwedge x'. \ x' = x$$

Principle:

? $f x_1 ... x_n$ can only be replaced by term t

if
$$params(t) \subseteq x_1, \ldots, x_n$$

Safe and Unsafe Rules

Safe allI, exE Unsafe allE, exI

Create parameters first, unknowns later

DEMO: QUANTIFIER PROOFS

Parameter names are chosen by Isabelle

1.
$$\forall x. \exists y. x = y$$

apply (rule all)

1.
$$\bigwedge x$$
. $\exists y$. $x = y$

Brittle!

Renaming parameters

1.
$$\forall x$$
. $\exists y$. $x = y$

apply (rule allI)

1.
$$\bigwedge x$$
. $\exists y$. $x = y$

apply (rename_tac N)

1.
$$\bigwedge N$$
. $\exists y$. $N = y$

apply (rule_tac
$$x = "N"$$
 in exl)

In general:

(rename_tac $x_1 \dots x_n$) renames the rightmost (inner) n parameters to $x_1 \dots x_n$

Forward Proof: frule and drule

Rule:
$$[A_1; \ldots; A_m] \Longrightarrow A$$

Subgoal: 1.
$$[B_1; ...; B_n] \Longrightarrow C$$

Substitution:
$$\sigma(B_i) \equiv \sigma(A_1)$$

New subgoals: 1.
$$\sigma(\llbracket B_1; \dots; B_n \rrbracket) \Longrightarrow A_2$$

:

m-1.
$$\sigma(\llbracket B_1; \ldots; B_n \rrbracket) \Longrightarrow A_m$$

$$\mathsf{m}.\ \sigma(\llbracket B_1;\ldots;B_n;A\rrbracket\Longrightarrow C)$$

Like **frule** but also deletes B_i : **apply** (drule < rule >)

Examples for Forward Rules

$$\frac{P \wedge Q}{P} \text{ conjunct1} \qquad \frac{P \wedge Q}{Q} \text{ conjunct2}$$

$$\frac{P \longrightarrow Q \quad P}{Q}$$
 mp

$$\frac{\forall x. P x}{P?x}$$
 spec

Forward Proof: OF

$$r$$
 [**OF** $r_1 \dots r_n$]

Prove assumption 1 of theorem r with theorem r_1 , and assumption 2 with theorem r_2 , and ...

Rule
$$r$$
 $\llbracket A_1; \dots; A_m \rrbracket \Longrightarrow A$
Rule r_1 $\llbracket B_1; \dots; B_n \rrbracket \Longrightarrow B$
Substitution $\sigma(B) \equiv \sigma(A_1)$
 $r \llbracket \mathsf{OF} \ r_1 \rrbracket = \sigma(\llbracket B_1; \dots; B_n; A_2; \dots; A_m \rrbracket \Longrightarrow A)$

Forward proofs: THEN

 r_1 [THEN r_2] means r_2 [OF r_1]

DEMO: FORWARD PROOFS

Hilbert's Epsilon Operator

(David Hilbert, 1862-1943)

 ε x. Px is a value that satisfies P (if such a value exists)

 ε also known as **description operator**. In Isabelle the ε -operator is written SOME x. P x

$$\frac{P?x}{P(\mathsf{SOME}\,x.\,P\,x)}\;\mathsf{somel}$$

More Epsilon

arepsilon implies Axiom of Choice:

$$\forall x. \exists y. \ Q \ x \ y \Longrightarrow \exists f. \ \forall x. \ Q \ x \ (f \ x)$$

Existential and universal quantification can be defined with ε .

Isabelle also knows the definite description operator **THE** (aka ι):

$$\overline{(\mathsf{THE}\,x.\,x=a)=a}$$
 the_eq_trivial

Some Automation

More Proof Methods:

apply (intro <intro-rules>) repeatedly applies intro rules

apply (elim <elim-rules>) repeatedly applies elim rules

apply clarify applies all safe rules

that do not split the goal

apply safe applies all safe rules

apply blast an automatic tableaux prover

(works well on predicate logic)

apply fast another automatic search tactic

EPSILON AND AUTOMATION DEMO

We have learned so far...

- → Proof rules for predicate calculus
- → Safe and unsafe rules
- → Forward Proof
- → The Epsilon Operator
- → Some automation

Assignment

Assignement 1 is out today!

Reminder: DO NOT COPY

- → Assignments and exams are take-home. This does NOT mean you can work in groups. Each submission is personal.
- → For more info, see Plagiarism Policy