COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Christine Rizkallah

—



Content

=» Intro & motivation, getting started

=» Foundations & Principles
» Lambda Calculus, natural deduction
» Higher Order Logic
» Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction

Datatypes, recursion, induction

Hoare logic, proofs about programs, C verification
(mid-semester break)

Writing Automated Proof Methods

Isar, codegen, typeclasses, locales

v

vvyVvyyvyy

(1]

(1.2]
[3°]
[4]

[5]
6, 7]
[8°,9]

[10]
[11,12]

aal due; Pa2 due; €a3 due



Last Time on HOL

=» Defining HOL

-» Higher Order Abstract Syntax
=» Deriving proof rules

=» More automation



(o

NICTA

TERM REWRITING



The Problem

Given a set of equations

I1:r1
/2:r2
I, =,

does equation / = r hold?

Applications in:
=> Mathematics (algebra, group theory, etc)
=» Functional Programming (model of execution)
=»> Theorem Proving (dealing with equations, simplifying statements)



Term Rewriting: The Idea

use equations as reduction rules

/1—)!‘1
/2—)[‘2

In —
decide / = r by deciding / < r



Arrow Cheat Sheet

0 o
— = {(xy)x=y} identity
1 .
UL L Ny NN n+1 fold composition
= Uso— transitive closure
= o= Kol reflexive transitive closure
= = Ul reflexive closure
—1 .
— = {(y,x)|x — y} inverse
— = = inverse
— = +—U— symmetric closure
& = U transitive symmetric closure
& o= Sud reflexive transitive symmetric closure



How to Decide / +— r

Same idea as for : look for n such that / — nand r — n

Does this always work?
If | = nand r — nthen / <— r. Ok.
If | <= r, will there always be a suitable n? No!

Example:

Rules: fx—a, gx—b, f(gx)—b
fx«—gx because fx—a«—f(gx)— b+—gx
But: fx— aandgx — band a, bin normal form

Works only for systems with Church-Rosser property:
|« r=3n.1 S nAr—sn

Fact: — is Church-Rosser iff it is confluent.



Confluence

s Problem:
% \§ is a given set of reduction rules conflu-
X Y ent?
Sy ok
t undecidable

Local Confluence

N 7’
Y e
oy o X

t

Fact: local confluence and termination = confluence



Termination

— is terminating if there are no infinite reduction chains
— is normalizing if each element has a normal form
— is convergent if it is terminating and confluent

Example:
— 3 in A is not terminating, but confluent
—p in A7 is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable



When is — Terminating?

Basic idea: when each rule application makes terms simpler in
some way.

More formally: — is terminating when there is a well founded
order < on terms for which s < t whenever t — s
(well founded = no infinite decreasing chains a; > a, > ...)

Example: f (g x) — g x, g (f x) — f x

This system always terminates. Reduction order:
s <, t iff size(s) < size(t) with
size(s) = number of function symbols in s

@ Both rules always decrease size by 1 when applied to any term t
® <, is well founded, because < is well founded on IN



Termination in Practice

In practice: often easier to consider just the rewrite rules by
themselves,

rather than their application to an arbitrary term t.
Show for each rule /; = r;, that r; < ;.

Example:
gx<f(gx)andf x < g(f x)

Requires
u to become smaller whenever any subterm of v is made smaller.
Formally:
Requires < to be monotonic with respect to the structure of
terms:
s <t — ufs] < u[t].
True for most orders that don’t treat certain parts of terms as
special cases.



Example Termination Proof

Problem: Rewrite formulae containing —, A, vV and —, so that
they don’t contain any implications and — is applied only to
variables and constants.

Rewrite Rules:
=» Remove implications:
imp: (A— B)=(-AVB)
=» Push —s down past other operators:
notnot: (——P)=P
notand: (—(AAB))=(-AV-B)
notor: (=(AvV B))=(-AA-B)

We show that the rewrite system defined by these rules is
terminating.



Order on Terms

Each time one of our rules is applied, either:
=» an implication is removed, or
=» something that is not a — is hoisted upwards in the term.
This suggests a 2-part order, <,: s <, t iff:
= num_imps s < num_imps t, Or
= num_imps s = num_imps t A osize s < osize t.
Let:
= s <; t =num.imps s < num_imps t and
=>» s <, t=osizes < osize t
Then <; and <, are both well-founded orders (since both return
nats).
<, is the lexicographic order over <; and <,. <, is well-founded
since <; and <, are both well-founded.



Order Decreasing

imp clearly decreases num_imps.
osize adds up all non-— operators and variables/constants,
weights each one according to its depth within the term.

osize’ ¢ x =2

osize’ (—P) x = osize’ P (x + 1)

osize’ (PN Q) x =2%+ (osize’ P (x+ 1)) + (osize’ Q (x + 1))
osize’ (PV Q) x =2¥+ (osize’ P (x + 1)) + (osize’ Q (x + 1))
osize’ (P — Q) x = 2* + (osize’ P (x + 1)) + (osize’ Q (x + 1))
osize P = osize’ P 0

The other rules decrease the depth of the things osize counts, so
decrease osize.



Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier

apply simp

=» uses simplification rules
=» (almost) blindly from left to right
=» until no rule is applicable.

termination: not guaranteed
(may loop)

confluence: not guaranteed
(result may depend on which rule is used first)



Control

=» Equations turned into simplification rules with [simp] attribute
=» Adding/deleting equations locally:

apply (simp add: <rules>) and apply (simp del: <rules>)
=» Using only the specified set of equations:

apply (simp only: <rules>)



NICTA

DEmMO



We have seen today...

=» Equations and Term Rewriting
=» Confluence and Termination of reduction systems
=» Term Rewriting in Isabelle



Exercises

-» Show, via a pen-and-paper proof, that the osize function is
monotonic with respect to the structure of terms from that
example.



