

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Christine Rizkallah

Content

ontent	
	NICTA
➔ Intro & motivation, getting started	[1]
 → Foundations & Principles Lambda Calculus, natural deduction Higher Order Logic Term rewriting 	[1,2] [3 ^ª] [4]
 Proof & Specification Techniques Inductively defined sets, rule induction Datatypes, recursion, induction Hoare logic, proofs about programs, C verification (mid-semester break) Writing Automated Proof Methods Isar, codegen, typeclasses, locales 	[5] [6, 7] [8 ^b ,9] [10] [11 ^c ,12]
	[··· ,·=]

^aa1 due; ^ba2 due; ^ca3 due

Last Time

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

Applying a Rewrite Rule

- → I → r applicable to term t[s] if there is substitution σ such that σ I = s
- → Result: $t[\sigma r]$
- → Equationally: $t[s] = t[\sigma r]$

Example: Rule: $0 + n \longrightarrow n$ Term: a + (0 + (b + c))Substitution: $\sigma = \{n \mapsto b + c\}$ Result: a + (b + c)

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

is **applicable** to term t[s] with σ if

 $\rightarrow \sigma I = s$ and

→ $\sigma P_1, \ldots, \sigma P_n$ are provable by rewriting.

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma "
$$f x = g x \land g x = f x \Longrightarrow f x = 2$$
"

simp (simp (no_asm)) (simp (no_asm_use)) (simp (no_asm_simp)) use and simplify assumptions ignore assumptions simplify, but do not use assumptions use, but do not simplify assumptions

Preprocessing (recursive) for maximal simplification power:

$$\neg A \quad \mapsto \quad A = False$$
$$A \longrightarrow B \quad \mapsto \quad A \Longrightarrow B$$
$$A \land B \quad \mapsto \quad A, B$$
$$\forall x. \ A \ x \quad \mapsto \quad A \ ?x$$
$$A \quad \mapsto \quad A = True$$

Dемо

Copyright NICTA 2015, provided under Creative Commons Attribution License

$$P (if A then s else t) = (A \longrightarrow P s) \land (\neg A \longrightarrow P t)$$

Automatic

$$P (case e of 0 \Rightarrow a | Suc n \Rightarrow b)$$

$$=$$

$$(e = 0 \longrightarrow P a) \land (\forall n. e = Suc n \longrightarrow P b)$$
Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \implies hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example:
$$\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$$

Read: to simplify $P \longrightarrow Q$

- → first simplify P to P'
- → then simplify Q to Q' using P' as assumption
- \Rightarrow the result is $P' \longrightarrow Q'$

Sometimes useful, but not used automatically (slowdown): **conj**_**cong**: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

Context for if-then-else: **if_cong**: $[\![b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v]\!] \Longrightarrow$ (if *b* then *x* else *y*) = (if *c* then *u* else *v*)

Prevent rewriting inside then-else (default): **if_weak_cong**: $b = c \implies$ (if b then x else y) = (if c then x else y)

- → declare own congruence rules with [cong] attribute
- → delete with [cong del]
- → use locally with e.g. **apply** (simp cong: <rule>)

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

For types nat, int etc:

- lemmas add_ac sort any sum (+)
- lemmas mult_ac sort any product (*)
- **Example:** apply (simp add: add_ac) yields $(b+c) + a \rightarrow \cdots \rightarrow a + (b+c)$

Example for associative-commutative rules:Associative: $(x \odot y) \odot z = x \odot (y \odot z)$ Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$ We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$ We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operator Isabelle will order terms correctly

Dемо

Copyright NICTA 2015, provided under Creative Commons Attribution License

Last time: confluence in general is undecidable. But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f \xrightarrow{x \to a}$ (2) $g \xrightarrow{y \to b}$ (3) $f (g \xrightarrow{z}) \xrightarrow{b}$ Critical pairs:

Completion

(1)
$$f \xrightarrow{} a$$
 (2) $g \xrightarrow{} b$ (3) $f (g \xrightarrow{} z) \longrightarrow b$
is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3)
$$\{x \mapsto g \ z\}$$
 $a \stackrel{(1)}{\longleftarrow} f(g \ z) \stackrel{(3)}{\longrightarrow} b$

shows that a = b (because $a \stackrel{*}{\longleftrightarrow} b$), so we add $a \longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

DEMO: WALDMEISTER

Copyright NICTA 2015, provided under Creative Commons Attribution License

Definitions: A rule $l \rightarrow r$ is left-linear if no variable occurs twice in *l*. A rewrite system is left-linear if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

We have learned today ...

- → Conditional term rewriting
- → Congruence rules
- → AC rules
- ➔ More on confluence