COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Christine Rizkallah

(P ...{Q)

Last Time

=» Syntax of a simple imperative language
=» Operational semantics

=» Program proof on operational semantics
=» Hoare logic rules

=» Soundness of Hoare logic

Content

=» Intro & motivation, getting started

=» Foundations & Principles
» Lambda Calculus, natural deduction
» Higher Order Logic
» Term rewriting

=» Proof & Specification Techniques

Inductively defined sets, rule induction

Datatypes, recursion, induction

Hoare logic, proofs about programs, C verification
(mid-semester break)

Writing Automated Proof Methods

Isar, codegen, typeclasses, locales

v

vvyVvyyvyy

(1]

(1.2]
[3°]
[4]

[5]
6, 7]
[8°,9]

[10]
[11,12]

aal due; Pa2 due; €a3 due

Automation?

Last time: Hoare rule application is nicer than using operational
semantic.

BUT:
=» it’s still kind of tedious
=» it seems boring & mechanical

Automation?

Invariant

Problem: While — need creativity to find right (invariant) P

Solution:

=» annotate program with invariants

=» then, Hoare rules can be applied automatically
Example:

{(M=0AN :}
WHILE M # aINV{N =M=« b} DON:=N+ b;M:=M+10D
{N = ax b}

Weakest Preconditions

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP @ = Q@

pre (x :=a) Q = Ao. Q(o(x := ao))

pre (c1; @2) Q = preca (pre e Q)

pre (IF b THEN ¢; ELSE &) Q = Mo.(b—prec Qo)A

(-b—prec Qo)
pre (WHILE HINV /DO cOD) Q = |

Verification Conditions

{pre ¢ @} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP @ = True
ve (x:=a) Q = True
(C1 C2) = Vveo QA (VC c1 (pre (o)) Q))
vc (IF b THEN ¢; ELSE) Q = Vvcc QAVC o Q
vCe (WHILEBLINV IDOcOD)Q = (Vo.loAbo — precl o)A
Vo. 50 A =boc — Q o)A
VC ¢

vec QA (P = prec Q) = {P} c {Q}

Syntax Tricks

= x:=Mo.1 insteadof x:=1sucks
= {Mo.o x=n} insteadof {x = n} sucks as well

Problem: program variables are functions, not values
Solution: distinguish program variables syntactically

Choices:

=» declare program variables with each Hoare triple
> nice, usual syntax
» works well if you state full program and only use vcg

=» separate program variables from Hoare triple (use extensible
records),
indicate usage as function syntactically
» more syntactic overhead
> program pieces compose nicely

NICTA

DEmMO

Arrays

Depending on language, model arrays as functions:

=» Array access = function application:

al] = ai
=>» Array update = function update:
alil:i==v = a:==a(:=v)

Use lists to express length:
=» Array access = nth:

afil = ali
=» Array update = list update:
alilj===v = a::==afi=V]

=>» Array length = list length:
a.length = lengtha

Pointers

Choice 1
datatype ref = Ref int | Null
types heap =int= val
datatype val = Intint | Bool bool | Struct_x int int bool | ...

=» hp :: heap, p :: ref

=» Pointer access: *p = the_Int (hp (the_addr p))
=» Pointer update: *p:==v = hp == hp ((the_addr p) :=v)
=» a bit klunky

=» gets even worse with structs
=» lots of value extraction (the_Int) in spec and program

Pointers

Choice 2 (Burstall ’72, Bornat '00)

Example: struct with next pointer and element

datatype ref = Ref int | Null
types nexthp =int = ref
types elem_hp =int=int
=» next :: next_hp, elem :: elem_hp, p :: ref
=» Pointer access: p—next = next (the_addr p)
=» Pointer update: p—next == = next :== next ((the_addr p) :=
v)
In general:

=» a separate heap for each struct field

=» buys you p—next # p—elem automatically (aliasing)
=» still assumes type safe language

NICTA

DEmMO

We have seen today ...

=» Weakest precondition
=» Verification conditions
=» Example program proofs
=» Arrays, pointers

