
NICTA Copyright 2010 From imagination to impact 1

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Christine Rizkallah

{P} . . . {Q}

Copyright NICTA 2015, provided under Creative Commons Attribution License 1

NICTA Copyright 2010 From imagination to impact 1

Last Time

Ü Syntax of a simple imperative language
Ü Operational semantics
Ü Program proof on operational semantics
Ü Hoare logic rules
Ü Soundness of Hoare logic

Copyright NICTA 2015, provided under Creative Commons Attribution License 2

NICTA Copyright 2010 From imagination to impact 1

Content

Ü Intro & motivation, getting started [1]

Ü Foundations & Principles
I Lambda Calculus, natural deduction [1,2]
I Higher Order Logic [3a]
I Term rewriting [4]

Ü Proof & Specification Techniques
I Inductively defined sets, rule induction [5]
I Datatypes, recursion, induction [6, 7]
I Hoare logic, proofs about programs, C verification [8b,9]
I (mid-semester break)
I Writing Automated Proof Methods [10]
I Isar, codegen, typeclasses, locales [11c ,12]

aa1 due; ba2 due; ca3 due

Copyright NICTA 2015, provided under Creative Commons Attribution License 3

NICTA Copyright 2010 From imagination to impact 1

Automation?

Last time: Hoare rule application is nicer than using operational
semantic.

BUT:
Ü it’s still kind of tedious
Ü it seems boring & mechanical

Automation?

Copyright NICTA 2015, provided under Creative Commons Attribution License 4

NICTA Copyright 2010 From imagination to impact 1

Invariant

Problem: While – need creativity to find right (invariant) P

Solution:
Ü annotate program with invariants
Ü then, Hoare rules can be applied automatically

Example:

{M = 0 ∧ N = 0}
WHILE M 6= a INV {N = M ∗ b} DO N := N + b;M := M + 1 OD
{N = a ∗ b}

Copyright NICTA 2015, provided under Creative Commons Attribution License 5

NICTA Copyright 2010 From imagination to impact 1

Weakest Preconditions

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q
pre (x := a) Q = λσ. Q(σ(x := aσ))
pre (c1; c2) Q = pre c1 (pre c2 Q)
pre (IF b THEN c1 ELSE c2) Q = λσ. (b −→ pre c1 Q σ) ∧

(¬b −→ pre c2 Q σ)
pre (WHILE b INV I DO c OD) Q = I

Copyright NICTA 2015, provided under Creative Commons Attribution License 6

NICTA Copyright 2010 From imagination to impact 1

Verification Conditions

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True
vc (x := a) Q = True
vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))
vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q
vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧
vc c I

vc c Q ∧ (P =⇒ pre c Q) =⇒ {P} c {Q}

Copyright NICTA 2015, provided under Creative Commons Attribution License 7

NICTA Copyright 2010 From imagination to impact 1

Syntax Tricks

Ü x := λσ. 1 instead of x := 1 sucks
Ü {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:

Ü declare program variables with each Hoare triple
I nice, usual syntax
I works well if you state full program and only use vcg

Ü separate program variables from Hoare triple (use extensible
records),
indicate usage as function syntactically

I more syntactic overhead
I program pieces compose nicely

Copyright NICTA 2015, provided under Creative Commons Attribution License 8

NICTA Copyright 2010 From imagination to impact 1

DEMO

Copyright NICTA 2015, provided under Creative Commons Attribution License 9

NICTA Copyright 2010 From imagination to impact 1

Arrays

Depending on language, model arrays as functions:

Ü Array access = function application:
a[i] = a i

Ü Array update = function update:
a[i] :== v = a :== a(i:= v)

Use lists to express length:
Ü Array access = nth:

a[i] = a ! i
Ü Array update = list update:

a[i] :== v = a :== a[i:= v]
Ü Array length = list length:

a.length = length a

Copyright NICTA 2015, provided under Creative Commons Attribution License 10

NICTA Copyright 2010 From imagination to impact 1

Pointers

Choice 1

datatype ref = Ref int | Null
types heap = int⇒ val
datatype val = Int int | Bool bool | Struct x int int bool | . . .

Ü hp :: heap, p :: ref
Ü Pointer access: *p = the Int (hp (the addr p))
Ü Pointer update: *p :== v = hp :== hp ((the addr p) := v)

Ü a bit klunky
Ü gets even worse with structs
Ü lots of value extraction (the Int) in spec and program

Copyright NICTA 2015, provided under Creative Commons Attribution License 11

NICTA Copyright 2010 From imagination to impact 1

Pointers

Choice 2 (Burstall ’72, Bornat ’00)

Example: struct with next pointer and element

datatype ref = Ref int | Null
types next hp = int⇒ ref
types elem hp = int⇒ int

Ü next :: next hp, elem :: elem hp, p :: ref
Ü Pointer access: p→next = next (the addr p)
Ü Pointer update: p→next :== v = next :== next ((the addr p) :=

v)

In general:
Ü a separate heap for each struct field
Ü buys you p→next 6= p→elem automatically (aliasing)
Ü still assumes type safe languageCopyright NICTA 2015, provided under Creative Commons Attribution License 12

NICTA Copyright 2010 From imagination to impact 1

DEMO

Copyright NICTA 2015, provided under Creative Commons Attribution License 13

NICTA Copyright 2010 From imagination to impact 1

We have seen today ...

Ü Weakest precondition
Ü Verification conditions
Ü Example program proofs
Ü Arrays, pointers

Copyright NICTA 2015, provided under Creative Commons Attribution License 14

