COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Christine Rizkallah
Isar

Content

\rightarrow Intro \& motivation, getting started
\rightarrow Foundations \& Principles

- Lambda Calculus, natural deduction
- Higher Order Logic
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Hoare logic, proofs about programs, C verification
- (mid-semester break)
- Writing Automated Proof Methods
- Isar, codegen, typeclasses, locales

ISAR

A Language for Structured Proofs

Motivation

Is this true: $(A \longrightarrow B)=(B \vee \neg A)$?

Motivation

Is this true: $(A \longrightarrow B)=(B \vee \neg A)$?

YES!

```
apply (rule iffI)
    apply (cases A)
        apply (rule disjI1)
        apply (erule impE)
        apply assumption
        apply assumption
        apply (rule disjI2) Or by blast
        apply (rule impI)
        apply (erule disjE)
        apply assumption
        apply (erule notE)
        apply assumption
        done
```

OK it's true. But WHY?

Motivation

WHY is this true: $(A \longrightarrow B)=(B \vee \neg A)$?

Demo

Isar

apply scripts

What about.

\rightarrow unreadable \rightarrow Elegance?
\rightarrow hard to maintain \rightarrow Explaining deeper insights?
\rightarrow do not scale $\quad \rightarrow$ Large developments?

No structure.
Isar!

A typical Isar proof

proof
 assume formula have formula ${ }_{1}$ by simp
 have formula ${ }_{n}$ by blast show formula ${ }_{n+1}$ by ... qed

proves formula $a_{0} \Longrightarrow$ formula $_{n+1}$
(analogous to assumes/shows in lemma statements)

Isar core syntax

$$
\begin{aligned}
\text { proof }= & \text { proof }[\text { method }] \text { statement }{ }^{*} \text { qed } \\
& \mid \text { by method }
\end{aligned}
$$

method $=(\operatorname{simp} \ldots) \mid($ blast $\ldots) \mid($ rule $\ldots) \mid \ldots$
statement $=\mathbf{f i x}$ variables
assume proposition
[from name ${ }^{+}$] (have \midshow) proposition proof
next
(separates subgoals)
proposition $=$ [name:] formula

proof and qed

proof [method] statement* qed

lemma "【A; $B \rrbracket \Longrightarrow A \wedge B$ " proof (rule conjl)
assume A: "A"
from A show " A " by assumption
next
assume B : " B "
from B show " B " by assumption
qed
\rightarrow proof (<method $>$) applies method to the stated goal
\rightarrow proof
\rightarrow proof applies a single rule that fits does nothing to the goal

How do I know what to Assume and Show?

Look at the proof state!

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ " proof (rule conjl)
\rightarrow proof (rule conjl) changes proof state to

1. $\llbracket A ; B \rrbracket \Longrightarrow A$
2. $\llbracket A ; B \rrbracket \Longrightarrow B$
\rightarrow so we need 2 shows: show " A " and show " B "
\rightarrow We are allowed to assume A, because A is in the assumptions of the proof state.

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has openend or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ " [prove] proof (rule conjl) [state]
assume A: " A " [state]
from A [chain] show " A " [prove] by assumption [state] next [state]...

Have

Can be used to make intermediate steps.

Example:

```
lemma "(x :: nat \()+1=1+x "\)
proof -
    have A: " \(x+1=\) Suc \(x\) " by simp
    have B : " \(1+x=\) Suc \(x\) " by simp
    show " \(x+1=1+x\) " by (simp only: A B)
qed
```


Demo

Backward and Forward

Backward reasoning: . . . have " $A \wedge B$ " proof
\rightarrow proof picks an intro rule automatically
\rightarrow conclusion of rule must unify with $A \wedge B$
Forward reasoning: ...
assume $A B: " A \wedge B$ "
from $A B$ have ". . ." proof
\rightarrow now proof picks an elim rule automatically
\rightarrow triggered by from
\rightarrow first assumption of rule must unify with $A B$
General case: from $A_{1} \ldots A_{n}$ have R proof
\rightarrow first n assumptions of rule must unify with $A_{1} \ldots A_{n}$
\rightarrow conclusion of rule must unify with R

Fix and Obtain

$$
\operatorname{fix} v_{1} \ldots v_{n}
$$

Introduces new arbitrary but fixed variables (\sim parameters, \wedge)
obtain $v_{1} \ldots v_{n}$ where <prop> <proof>
Introduces new variables together with property

Demo

Fancy Abbreviations

```
    this = the previous fact proved or assumed
    then = from this
    thus = then show
    hence = then have
with }\mp@subsup{A}{1}{}\ldots\mp@subsup{A}{n}{}== from A . .. A A thi
    ?thesis = the last enclosing goal statement
```


Moreover and Ultimately

have $X_{1}: P_{1} \ldots$
have $X_{2}: P_{2} \ldots$
:
have $X_{n}: P_{n} \ldots$
from $X_{1} \ldots X_{n}$ show \ldots
wastes lots of brain power on names $X_{1} \ldots X_{n}$
have $P_{1} \ldots$
moreover have $P_{2} \ldots$
\vdots
moreover have $P_{n} \ldots$
ultimately show ...

General Case Distinctions

show formula
proof -
have $P_{1} \vee P_{2} \vee P_{3}<$ proof $>$
moreover $\quad\left\{\right.$ assume $P_{1} \ldots$ have ?thesis $<$ proof $>$ \} moreover $\left\{\right.$ assume $P_{2} \ldots$ have ?thesis $<$ proof $>$ \} moreover $\left\{\right.$ assume $P_{3} \ldots$ have ?thesis <proof $>$ \} ultimately show ?thesis by blast
qed
$\{\ldots\}$ is a proof block similar to proof ... qed
$\left\{\right.$ assume $P_{1} \ldots$ have $\mathrm{P}<$ proof $>$ \} stands for $P_{1} \Longrightarrow P$

Mixing proof styles

from ...
have...
apply - make incoming facts assumptions
apply (...)
:
apply (...)
done

Datatypes in ISAR

Datatype case distinction

proof (cases term) case Constructor ${ }_{1}$
next

next

case (Constructor ${ }_{k} \vec{x}$)
qed
case (Constructor ${ }_{i} \vec{x}$) \equiv
fix \vec{x} assume Constructor ${ }_{i}$: "term = Constructor ${ }_{i} \vec{x} "$

Structural induction for type nat

show $P n$
proof (induct n)
case 0

$$
\equiv \text { let ?case }=P 0
$$

show ?case
next

$$
\begin{array}{lll}
\text { case }(\text { Suc } n) & \equiv & \text { fix } n \text { assume Suc: } P n \\
\cdots & & \text { let } ? \text { case }=P(\text { Suc } n)
\end{array}
$$

-• n ••
show ?case
qed

Structural induction with \Longrightarrow and \wedge

show " $\bigwedge x$. $A n \Longrightarrow P n "$
proof (induct n)
case 0
show ?case
next
case (Suc n)
-• n •••
show ?case
qed
\equiv fix x assume 0: "A 0" let ?case = "P 0"
$\equiv \mathrm{fix} n$ and x assume Suc: "^x. $A n \Longrightarrow P n "$ let ? case $=" P($ Suc $n) "$

Demo: Datatypes in Isar

Calculational Reasoning

The Goal

Prove:
 $$
x \cdot x^{-1}=1
$$

using: assoc: $(x \cdot y) \cdot z=x \cdot(y \cdot z)$
left_inv: $\quad x^{-1} \cdot x=1$
left_one: $1 \cdot x=x$

The Goal

Prove:

$$
\begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)-\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)-1 \cdot 1 \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)-1 \cdot\left(1 \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)-1 \cdot x^{-1} \\
\ldots & =1
\end{aligned}
$$

$$
\begin{aligned}
\text { assoc: } & (x \cdot y) \cdot z=x \cdot(y \cdot z) \\
\text { left_inv: } & x^{-1} \cdot x=1 \\
\text { left_one: } & 1 \cdot x=x
\end{aligned}
$$

Can we do this in Isabelle?
\rightarrow Simplifier: too eager
\rightarrow Manual: difficult in apply style
\rightarrow Isar: with the methods we know, too verbose

Chains of equations

The Problem

$$
\begin{gathered}
a=b \\
\cdots=c \\
\cdots=d \\
\text { shows } a=d \text { by transitivity of }=
\end{gathered}
$$

Each step usually nontrivial (requires own subproof) Solution in Isar:
\rightarrow Keywords also and finally to delimit steps
\rightarrow...: predefined schematic term variable, refers to right hand side of last expression
\rightarrow Automatic use of transitivity rules to connect steps

also/finally

have " $t_{0}=t_{1}$ " [proof]
also
have ". . . = t_{2} " [proof]
also
:
also
have " $\cdots=t_{n}$ " [proof]
finally
show P
—'finally' pipes fact " $t_{0}=t_{n}$ " into the proof
calculation register
$" t_{0}=t_{1} "$
$" t_{0}=t_{2} "$
$" t_{0}=t_{n-1} "$
$t_{0}=t_{n}$

More about also

\rightarrow Works for all combinations of $=, \leq$ and $<$.
\rightarrow Uses all rules declared as [trans].
\rightarrow To view all combinations: print_trans_rules

Designing [trans] Rules

$$
\begin{aligned}
& \text { have }=" I_{1} \odot r_{1} " \text { [proof] } \\
& \text { also } ", \ldots \odot r_{2} " \text { [proof] } \\
& \text { have } \\
& \text { also }
\end{aligned}
$$

Anatomy of a [trans] rule:

\rightarrow Usual form: plain transitivity $\llbracket h_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow I_{1} \odot r_{2}$
\rightarrow More general form: $\llbracket P I_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C I_{1} r_{2}$
Examples:
\rightarrow pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$
\rightarrow mixed: $\llbracket a \leq b ; b<c \rrbracket \Longrightarrow a<c$
\rightarrow substitution: $\llbracket P a ; a=b \rrbracket \Longrightarrow P b$
\rightarrow antisymmetry: $\llbracket a<b ; b<a \rrbracket \Longrightarrow$ False
\rightarrow monotonicity:
$\llbracket a=f b ; b<c ; \wedge x y . x<y \Longrightarrow f x<f y \rrbracket \Longrightarrow a<f c$

Demo

