

COMP 4161

Data61 Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Christine Rizkallah

type classes & locales

Content

- → Intro & motivation, getting started
- → Foundations & Principles

 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3 ^a]
 Term rewriting 	[4]

→ Proof & Specification Techniques

 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	[6, 7]
 Hoare logic, proofs about programs, C verification 	$[8^{b}, 9]$

• (mid-semester break)

Writing Automated Proof Methods [10]

• Isar, codegen, typeclasses, locales [11^c,12]

^aa1 due; ^ba2 due; ^ca3 due

Type Classes

Common pattern in Mathematics:

- → Define abstract structures (semigroup, group, ring, field, etc)
- → Study and derive properties in these structures
- → Instantiate to concrete structure: (nats with + and * from a ring)
- → Can use all abstract laws for concrete structure

Type classes in functional languages:

- → Declare a set of functions with signatures (e.g. plus, zero)
- → give them a name (e.g. c)
- → Have syntax 'a :: c for: type 'a supports the operations of c
- → Can write abstract polymorphic functions that use plus and zero
- → Can instantiate specific types like nat to c

Isabelle supports both.

Type Class Example

Example:

```
class semigroup = fixes mult :: 'a \Rightarrow 'a \Rightarrow 'a (infix \cdot 70) assumes assoc: (x \cdot y) \cdot z = x \cdot (y \cdot z)
```

Declares:

- → a name (semigroup)
- → a set of operations (fixes mult)
- → a set of properties/axioms (assumes assoc)

Type Class Use

Can constrain type variables 'a with a class:

```
definition sq :: ('a :: semigroup) \Rightarrow 'a where sq x \equiv x \cdot x
```

More than one constraint allowed.

Sets of class constraints are called **sort**.

Can reason abstractly:

lemma "sq
$$x \cdot sq x = x \cdot x \cdot x \cdot x$$
"

Can instantiate:

instantiation nat :: semigroup

begin

definition "(x::nat) \cdot y = x * y"

instance < *proof* >

end

Demo: Type Classes

Type constructors

Basic type instantiation is a special case.

In general:

Type constructors can be seen as functions from classes to classes.

Example:

```
product type prod :: (semigroup, semigroup) semigroup (or: pairs of semigroup elements again form a semigroup)
```

Declarations such as (semigroup, semigroup) semigroup called arities.

Fully integrated with automatic type inference.

Subclasses

Type classes can be extended:

```
class rmonoid = semigroup +
fixes one :: 'a
assumes x · one = x
```

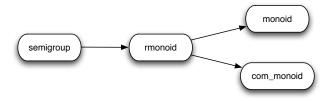
rmonoid is a **subclass** of semigroup

Has all operations & assumptions of semigroup + additional ones.

Can build hierarchies of abstract structures.

More Subclasses

Example structure:



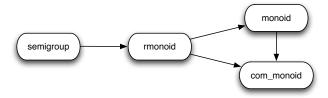
Can prove: every com_monoid is also a monoid.

Can tell Isabelle that connection:

subclass (in com_monoid) monoid < proof >

Result

Result:



Limitations

Operations (fixes) are implemented by overloading

- → each type constructor can implement each operation only once
- → semigroup must be instantiated to addition or multiplication, not both

Type inference must remain automatic, with unique most general types

- → type classes can mention only one type variable
- → type constructor arities must be co-regular: $K :: (c_1, ..., c_n)c$ and $K :: (c'_1, ..., c'_n)c'$ and $c \subseteq c'$ $\Longrightarrow \forall i. \ c_i \subseteq c'_i$

Demo: Subclasses

From Types to Logic

Type classes use the type system to store facts.

lemma	lemma
fixes $x :: \alpha :: rmonoid$	fixes $x :: \alpha$
	assumes OFCLASS(α , rmonoid)
shows $x \cdot one \cdot y = c \cdot y$	$ \mathbf{shows} \ x \cdot one \cdot y = c \cdot y$

The type system allows us to manage type assertions **implicitly**. What if we could implicitly manage a **lemma**? We get **locales**.

Declaring Locales

Declaring **locale** (named context) *loc*:

locale loc =

loc1 + Import other locales

fixes . . . variables assumes . . . facts

assumes ... lacts

The **fixes** and **assumes** are called context elements.

Declaring Locales

Theorems may be stated relative to a named locale.

```
lemma (in loc) P [simp]: proposition
  proof

or

context loc begin
lemma P [simp]: proposition
  proof
end
```

- → Adds theorem *P* to context *loc*.
- → Theorem *P* is in the simpset in context *loc*.
- → Exported theorem *loc.P* visible in the entire theory.

Isar Is Based On Contexts

Locales use concepts similar to structured proofs (Isar).

```
theorem \bigwedge x. A \Longrightarrow C

proof -

fix x

assume Ass: A

\vdots

from Ass show C \ldots

x \in A

inside this context

qed
```

Beyond Isar Contexts

Locales are extended contexts, look similar to type classes

- → Locales are named
- → Fixed variables may have syntax
- → Locale may be entered and exited repeatedly
- → It is possible to add and export theorems
- → It is possible to **instantiate** locales
- → Locale expression: **combine** and **modify** locales
- → No limitation on type variables
- → Term level, not type level: no automatic inference

Context Elements

Locales consist of **context elements**.

fixes Parameter, with syntax

Assumption assumes defines Definition

Record a theorem notes

Demo: Locales 1

Parameters Must Be Consistent!

- → Parameters in **fixes** are distinct.
- → Free variables in **defines** occur in preceding **fixes**.
- → Defined parameters cannot occur in preceding **assumes** nor **defines**.

Locale Expressions

Locale name: *n*

Rename: $n: e q_1 \dots q_n$

Change names of parameters in e,

Give new locale the name prefix n (optional)

Merge: $e_1 + e_2$

Context elements of e_1 , then e_2 .

Demo: Locales 2

Normal Form of Locale Expressions

Locale expressions are converted to flattened lists of locale names.

- → With full parameter lists
- → Duplicates removed

Allows for multiple inheritance!

Instantiation

Move from abstract to concrete.

interpretation label: loc "parameter 1" ... "parameter n"

- → Instantiates locale **loc** with provided parameters.
- → Imports all theorems of **loc** into current context.
 - Instantiates theorems with provided parameters.
 - Interprets attributes of theorems.
 - Prefixes theorem names with label
- → version for local Isar proof: **interpret**

Sublocales

Similar to type classes:

makes facts of parent_loc available in sub_loc.

Demo: Locales 3

We have seen today ...

- → Type Classes + Instantiation
- → Locale Declarations + Theorems in Locales
- → Locale Expressions + Inheritance
- → Locale Instantiation