
COMP4161 S2/2016
Advanced Topics in Software Verification

Assignment 2

This assignment starts on Monday, 2016-09-12 and is due on Thursday, 2016-
09-22, 23:59h. We will accept Isabelle .thy files only. In addition to this pdf
document, please refer to the provided Isabelle template for the definitions
and lemma statements.

The assignment is take-home. This does NOT mean you can work in groups.
Each submission is personal. For more information, see the plagiarism pol-
icy: https://student.unsw.edu.au/plagiarism

Submit using give on a CSE machine: give cs4161 a2 a2.thy

For all questions, you may prove your own helper lemmas, and you may
use lemmas proved earlier in other questions. If you can’t finish an earlier
proof, use sorry to assume that the result holds so that you can use it if you
wish in a later proof. You won’t be penalised in the later proof for using
an earlier true result you were unable to prove, and you’ll be awarded part
marks for the earlier question in accordance with the progress you made on
it.

Introduction

Consider the following simple imperative language IMP, with a skip
statement, assignment of variables to arithmetic expressions, sequenc-
ing, conditionals (“if-then-else”) and while loops. Variables can only
be of type nat ; their names are just strings. The state of a program is
a valuation of all the variables (i.e., a mapping from variable names to
their current value). The syntax of arithmetic expressions and Boolean
expressions is left unspecified: they are represented by functions that
take a state as parameter, to get the values of the variables, and return
the result of the expression.

type-synonym vname = string
type-synonym state = vname ⇒ nat
type-synonym aexp = state ⇒ nat
type-synonym bexp = state ⇒ bool

1

https://student.unsw.edu.au/plagiarism

datatype
com = SKIP
| Assign vname aexp (- :== - [60 ,60] 60)
| Semi com com (-;; - [50 , 51] 50)
| Cond bexp com com (IF - THEN - ELSE - FI [0 ,0 ,59] 60)
| While bexp com (WHILE - DO - OD [0 ,45] 60)

In order to make the programs more readable, we introduce some syntax:

• the term Assign x a can be written as x :== a ,

• the term Semi c1 c2 as c1 ;; c2,

• the term If b c1 c2 as IF b THEN c1 ELSE c2 FI, and

• the while loop While b c as WHILE b DO c OD.

We now define the semantics of the language, i.e. the meaning of a program.
This is defined as the output state s ′ of the program c when executed from
an input state s, denoted (c,s) ⇒ s ′.

(SKIP , s) ⇒ s
eval-Skip

(x :== a , s) ⇒ s(x := a s)
eval-Assign

(c1, s) ⇒ s ′′ (c2, s
′′) ⇒ s ′

(c1;; c2, s) ⇒ s ′ eval-Semi

b s (c1, s) ⇒ s ′

(IF b THEN c1 ELSE c2 FI , s) ⇒ s ′ eval-IfTrue

¬ b s (c2, s) ⇒ s ′

(IF b THEN c1 ELSE c2 FI , s) ⇒ s ′ eval-IfFalse

¬ b s

(WHILE b DO c OD , s) ⇒ s
eval-WhileFalse

b s (c, s) ⇒ s ′′ (WHILE b DO c OD , s ′′) ⇒ s ′

(WHILE b DO c OD , s) ⇒ s ′ eval-WhileTrue

We consider the two following example programs:

definition max :: com where
max ≡

(IF (λs. s ′′A ′′ > s ′′B ′′)
THEN ′′R ′′ :== (λs. s ′′A ′′)
ELSE ′′R ′′ :== (λs. s ′′B ′′)
FI)

2

definition factorial :: com where
factorial ≡

′′B ′′ :== (λs. 1);;
WHILE (λs. s ′′A ′′ 6= 0) DO

′′B ′′ :== (λs. s ′′B ′′ ∗ s ′′A ′′);;
′′A ′′ :== (λs. s ′′A ′′ − 1)

OD

1 Variable Assignment (10 marks)

(a) Define a function var-assig that computes the set of variables that are
assigned to in a command, e.g. var-assig max = { ′′R ′′} and var-assig
factorial = { ′′A ′′, ′′B ′′} (7 marks).

(b) Prove that if some variable is not assigned to in a command, then that
variable is never modified by the command:

[[(c, s) ⇒ t ; x /∈ var-assig c]] =⇒ s x = t x

(3 marks)

2 Equivalent programs (12 marks)

Programs are equivalent if they behave the same:
c ∼ c ′ ≡ ∀ s t . (c, s) ⇒ t = (c ′, s) ⇒ t.

Note that if two programs are equivalent then either both terminate or both
do not terminate.

(a) Prove that op ∼ is an equivalence relation, i.e. it is reflexive, symmet-
ric, and transitive. (3 marks)

(b) Prove: [[c ∼ c ′; d ∼ d ′]] =⇒ (c;; d) ∼ (c ′;; d ′) (2 marks)

(c) Prove: [[c ∼ c ′; d ∼ d ′]] =⇒ IF b THEN c ELSE d FI ∼ IF b THEN c ′ ELSE d ′

FI (2 marks)

(d) Prove: [[(p, s) ⇒ t ; p = WHILE b DO c OD ; c ∼ c ′]] =⇒ (WHILE b DO c ′ OD ,

s) ⇒ t (2 marks)

(e) Prove: c ∼ c ′ =⇒ WHILE b DO c OD ∼ WHILE b DO c ′ OD (3 marks)

3

3 The SKIP command (30 marks)

Consider the following recursive function equivtoskip that determines if a
command behaves the same as SKIP :

primrec equivtoskip :: com ⇒ bool where
equivtoskip SKIP = True |
equivtoskip (x :==a) = False |
equivtoskip (c1 ;;c2) = (equivtoskip c1 ∧ equivtoskip c2) |
equivtoskip (IF b THEN c1 ELSE c2 FI) = (equivtoskip c1 ∧ equivtoskip c2) |
equivtoskip (WHILE b DO c OD) = False

(a) Prove the correctness of equivtoskip: equivtoskip c =⇒ c ∼ SKIP. (5
marks)

(b) Find some program that behaves like SKIP but for which equivtoskip
returns False, i.e. prove: ∃ c. c ∼ SKIP ∧ ¬ equivtoskip c. (5 marks)

(c) Define a recursive function less-skip that eliminates as many SKIPs
as possible from a command. For example:

less-skip (SKIP ;; SKIP ;; WHILE b DO x :== a ;; SKIP OD) =
WHILE b DO x :== a OD

less-skip (IF b THEN SKIP ;; SKIP ELSE (x :== a ;; SKIP) FI) =
IF b THEN SKIP ELSE x :== a FI

less-skip (IF b THEN SKIP ;; SKIP ELSE SKIP FI) = SKIP

less-skip (WHILE b DO SKIP ;; SKIP OD) = WHILE b DO SKIP OD

(5 marks)

(d) Prove, by induction on c, that less-skip preserves the semantics of a
program:

less-skip c ∼ c (15 marks)

4 Sequencing associativity (36 marks)

In this question we want to transform a program so that all sequence com-
mands are associated to the right, e.g., c1 ;; (c2 ;; c3);; (c4 ;; c5) becomes
c1 ;; (c2 ;; (c3 ;; (c4 ;; c5))). This transformation should also happen inside

4

other commands like if-then-else, e.g., c1 ;; IF b THEN c2 ;; c3 ;; c4 ELSE c5

FI ;; c6 becomes c1 ;; (IF b THEN c2 ;; (c3 ;; c4) ELSE c5 FI ;; c6).

Since this transformation is concerned primarily with sequencing, we trans-
late IMP programs into a tree structure that hides the other IMP commands
behind a single constructor, Node:

datatype tag = S | A vname aexp | C bexp | W bexp
datatype tree = Node tag tree list | Branch tree tree

fun com-to-tree where
com-to-tree SKIP = Node S []
| com-to-tree (Assign v a) = Node (A v a) []
| com-to-tree (Semi c1 c2) = Branch (com-to-tree c1) (com-to-tree c2)
| com-to-tree (Cond b c1 c2) = Node (C b) [com-to-tree c1 , com-to-tree c2]
| com-to-tree (While b c) = Node (W b) [com-to-tree c]

(a) Define an inverse function tree-to-com that transforms a tree back into
a program. Note that not all trees represent an IMP program. Given
a malformed tree you may return any program. (3 marks)

(b) Prove that tree-to-com (com-to-tree c) = c. (2 marks)

(c) Prove that wf-tree t =⇒ com-to-tree (tree-to-com t) = t. You will
first need to define the predicate wf-tree that indicates if a tree is well
formed in the sense that it represents an IMP program (e.g. an Assign
node must have an empty list of subtrees). (6 marks)

(d) We now want to define a function Branch-assoc that transforms the
tree to have sequences associated to the right:

Branch-assoc (Branch (Branch t1 t2) t3) =
Branch-assoc (Branch t1 (Branch t2 t3))

Branch-assoc (Branch (Node t ls) t3) =
Branch (Node t (map Branch-assoc ls)) (Branch-assoc t3)

Branch-assoc (Node t ls) =
Node t (map Branch-assoc ls)

Define such a function (using Isabelle’s function command). To prove
termination, you will need to define a measure on the tree that gets
smaller with the transformation. It may be useful to use a lexicographic
combination of size measures: in some recursive calls one measure de-
creases whereas in others the first measure stays the same but another

5

decreases. The start of the termination proof below uses size1 and
size2 as placeholders for two measures in lexicographic combination.
You may use the Isabelle provided function size that computes the
number of constructors used in a value of any datatype (including, in
particular, trees). (10 marks)

termination Branch-assoc
apply (relation inv-image (less-than <∗lex∗> less-than) (λt . (size1 t , size2 t)))

(e) To prove that the transformation preserves the semantics, we first define
a function that takes a function f and an IMP program, and applies f
to all sequencing pairs in the program:

fun map-Semi where
map-Semi f (Semi c1 c2) = f (map-Semi f c1) (map-Semi f c2)
| map-Semi f (Cond b c1 c2) = Cond b (map-Semi f c1) (map-Semi f c2)
| map-Semi f (While b c) = While b (map-Semi f c)
| map-Semi f x = x

Now we can rewrite tree-to-com (Branch-assoc t), for any well-formed
program t, as a map-Semi application:

wf-tree t =⇒
tree-to-com (Branch-assoc t) = map-Semi Semi-assoc1 (tree-to-com t)

for a suitable Semi-assoc1 function. Define such a Semi-assoc1 func-
tion and then prove the theorem above. (10 marks)

(f) Now prove that the transformation preserves the semantics:
(c, s) ⇒ s ′ =⇒ (tree-to-com (Branch-assoc (com-to-tree c)), s) ⇒ s ′

(5 marks)

5 Compilation (12 marks)

Consider a lower-level label-based language LAB, which only supports as-
signments and goto commands to explicit labels in the program. Labels are
identified by natural numbers.

type-synonym label = nat

datatype lcom =

6

LAssign vname aexp
| Label label
| LCGoto bexp label
| LGoto label

type-synonym lprog = lcom list

In this language, our 2 example programs max and factorial would be rep-
resented as:

definition
lmax :: lprog where
lmax ≡ [

LCGoto (λs. s ′′A ′′ ≤ s ′′B ′′) 0 ,
LAssign ′′R ′′ (λs. s ′′A ′′),
LGoto 1 ,
Label 0 ,
LAssign ′′R ′′ (λs. s ′′B ′′),
Label 1]

definition
lfactorial :: lprog where
lfactorial ≡ [LAssign ′′B ′′ (λs. 1),

Label 1 ,
LCGoto (λs. s ′′A ′′ = 0) 0 ,
LAssign ′′B ′′ (λs. s ′′B ′′ ∗ s ′′A ′′),
LAssign ′′A ′′ (λs. s ′′A ′′ − 1),
LGoto 1 ,
Label 0]

Define a function compile that takes a program in the IMP language and
compiles it into the LAB language, such that the following two lemmas hold:

compile max = lmax
compile factorial = lfactorial.

You will need to define a helper function that takes an IMP program and
the “current available label” and returns both the LAB program and a new
label.

7

	Variable Assignment (10 marks)
	Equivalent programs (12 marks)
	The SKIP command (30 marks)
	Sequencing associativity (36 marks)
	Compilation (12 marks)

