COMP4161 S2/2016
 Advanced Topics in Software Verification

Abstract

Assignment 2

This assignment starts on Monday, 2016-09-12 and is due on Thursday, 2016-$09-22,23: 59 \mathrm{~h}$. We will accept Isabelle .thy files only. In addition to this pdf document, please refer to the provided Isabelle template for the definitions and lemma statements.

The assignment is take-home. This does NOT mean you can work in groups. Each submission is personal. For more information, see the plagiarism policy: https://student.unsw.edu.au/plagiarism

Submit using give on a CSE machine: give cs4161 a2 a2.thy For all questions, you may prove your own helper lemmas, and you may use lemmas proved earlier in other questions. If you can't finish an earlier proof, use sorry to assume that the result holds so that you can use it if you wish in a later proof. You won't be penalised in the later proof for using an earlier true result you were unable to prove, and you'll be awarded part marks for the earlier question in accordance with the progress you made on it.

Introduction

Consider the following simple imperative language IMP, with a skip statement, assignment of variables to arithmetic expressions, sequencing, conditionals ("if-then-else") and while loops. Variables can only be of type nat; their names are just strings. The state of a program is a valuation of all the variables (i.e., a mapping from variable names to their current value). The syntax of arithmetic expressions and Boolean expressions is left unspecified: they are represented by functions that take a state as parameter, to get the values of the variables, and return the result of the expression.

```
type-synonym vname = string
type-synonym state = vname }=>\mathrm{ nat
type-synonym aexp = state }=>\mathrm{ nat
type-synonym bexp = state }=>\mathrm{ bool
```


datatype

com $=$ SKIP

Assign vname aexp	$(-:==-[60,60] 60)$
Semi com com	(-;; - [50, 51] 50)
Cond bexp com com	(IF - THEN - ELSE - FI [0,0,59] 60)
While bexp com	(WHILE - DO-OD [0,45] 60)

In order to make the programs more readable, we introduce some syntax:

- the term $A \operatorname{ssign} x a$ can be written as $x:==a$,
- the term Semi c1 c2 as $c 1 ;$; $c 2$,
- the term If bc1 c2 as IF b THEN c1 ELSE c2 FI, and
- the while loop While $b c$ as WHILE $b D O$ c $O D$.

We now define the semantics of the language, i.e. the meaning of a program. This is defined as the output state s^{\prime} of the program c when executed from an input state s, denoted $(c, s) \Rightarrow s^{\prime}$.

$$
\begin{gathered}
\overline{(S K I P, s) \Rightarrow s} \text { EVAL-SKIP } \overline{(x:==a, s) \Rightarrow s(x:=a s)} \text { EVAL-ASSIGN } \\
\frac{\left(c_{1}, s\right) \Rightarrow s^{\prime \prime} \quad\left(c_{2}, s^{\prime \prime}\right) \Rightarrow s^{\prime}}{\left(c_{1} ; c_{2}, s\right) \Rightarrow s^{\prime}} \text { EVAL-SEMI } \\
\frac{b s \quad\left(c_{1}, s\right) \Rightarrow s^{\prime}}{\left(I F b T H E N c_{1} E L S E c_{2} F I, s\right) \Rightarrow s^{\prime}}, \text { EVAL-IFTRUE } \\
\frac{\neg b s \quad\left(c_{2}, s\right) \Rightarrow s^{\prime}}{\left(I F b T H E N c_{1} E L S E c_{2} F I, s\right) \Rightarrow s^{\prime}} \text { EVAL-IFFALSE } \\
\frac{\neg b s}{(W H I L E b D O c O D, s) \Rightarrow s} \text { EVAL-WHILEFALSE } \\
\frac{(c, s) \Rightarrow s^{\prime \prime} \quad\left(W H I L E b D O c O D, s^{\prime \prime}\right) \Rightarrow s^{\prime}}{} \begin{array}{c}
(W H I L E b D O c O D, s) \Rightarrow s^{\prime}
\end{array}
\end{gathered}
$$

We consider the two following example programs:
definition max :: com where

```
max \equiv
    (IF (\lambdas.s "'A"> s '"B")
    THEN '" R" :== (\lambdas.s '" A')
    ELSE "'R":==(\lambdas.s '"B')
    FI)
```

```
definition factorial :: com where
factorial \equiv
    ''B" :== (\lambdas. 1);;
    WHILE (\lambdas.s ' 'A' 
                "'B"':== (\lambdas.s s'B" * s "' A');;
                "'A" :== (\lambdas.s " }\mp@subsup{A}{}{\prime\prime}-1
    OD
```


1 Variable Assignment (10 marks)

(a) Define a function var-assig that computes the set of variables that are assigned to in a command, e.g. var-assig $\max =\left\{{ }^{\prime \prime} R^{\prime \prime}\right\}$ and var-assig factorial $=\left\{{ }^{\prime \prime} A^{\prime \prime},{ }^{\prime \prime} B^{\prime \prime}\right\}$ (7 marks).
(b) Prove that if some variable is not assigned to in a command, then that variable is never modified by the command:

$$
\llbracket(c, s) \Rightarrow t ; x \notin \text { var-assig } c \rrbracket \Longrightarrow s x=t x
$$

(3 marks)

2 Equivalent programs (12 marks)

Programs are equivalent if they behave the same:

$$
c \sim c^{\prime} \equiv \forall s t .(c, s) \Rightarrow t=\left(c^{\prime}, s\right) \Rightarrow t
$$

Note that if two programs are equivalent then either both terminate or both do not terminate.
(a) Prove that $o p \sim$ is an equivalence relation, i.e. it is reflexive, symmetric, and transitive. (3 marks)
(b) Prove: $\llbracket c \sim c^{\prime} ; d \sim d^{\prime} \rrbracket \Longrightarrow(c ; ; d) \sim\left(c^{\prime} ; ; d^{\prime}\right)(2$ marks $)$
 FI (2 marks)
(d) Prove: $\llbracket(p, s) \Rightarrow t ; p=W H I L E b D O c O D ; c \sim c \rrbracket \Longrightarrow\left(W H I L E b D O c^{\prime} O D\right.$, $s) \Rightarrow t(2 \mathrm{marks})$
(e) Prove: $c \sim c^{\prime} \Longrightarrow$ WHILE b DO $c O D \sim$ WHILE $b D O c^{\prime} O D$ (3 marks)

3 The SKIP command (30 marks)

Consider the following recursive function equivtoskip that determines if a command behaves the same as SKIP:
primrec equivtoskip :: com \Rightarrow bool where
equivtoskip SKIP $=$ True \mid
equivtoskip $(x:==a)=$ False \mid
equivtoskip $(c 1 ; ; c \mathcal{L})=($ equivtoskip c1 \wedge equivtoskip c2 $) \mid$
equivtoskip (IF b THEN c1 ELSE c2 FI) $=($ equivtoskip c1 \wedge equivtoskip c2) \mid equivtoskip $($ WHILE b DO c OD $)=$ False
(a) Prove the correctness of equivtoskip: equivtoskip $c \Longrightarrow c \sim S K I P .(5$ marks)
(b) Find some program that behaves like SKIP but for which equivtoskip returns False, i.e. prove: $\exists c . c \sim S K I P \wedge \neg$ equivtoskip c. (5 marks)
(c) Define a recursive function less-skip that eliminates as many SKIPs as possible from a command. For example:

```
less-skip (SKIP;; SKIP;; WHILE b DO x :== a ;; SKIP OD)=
WHILE b DO x :== a OD
less-skip (IF b THEN SKIP;; SKIP ELSE (x :== a ;; SKIP) FI)=
IF b THEN SKIP ELSE x :== a FI
less-skip (IF b THEN SKIP;; SKIP ELSE SKIP FI) = SKIP
less-skip (WHILE b DO SKIP;; SKIP OD) = WHILE b DO SKIP OD
(5 marks)
```

(d) Prove, by induction on c, that less-skip preserves the semantics of a program:

$$
\text { less-skip } c \sim c(15 \text { marks })
$$

4 Sequencing associativity (36 marks)

In this question we want to transform a program so that all sequence commands are associated to the right, e.g., $c 1 ; ;(c 2 ; ; c 3) ;(c 4 ; ; c 5)$ becomes $c 1 ; ;(c 2 ; ;(c 3 ; ;(c 4 ; ; c 5)))$. This transformation should also happen inside
other commands like if-then-else, e.g., c1; IF b THEN c2;; c3;; c4 ELSE c5 FI; c6 becomes c1;; (IF b THEN c2 ; ; $(c 3 ; ; c 4)$ ELSE c5 FI; c66).

Since this transformation is concerned primarily with sequencing, we translate IMP programs into a tree structure that hides the other IMP commands behind a single constructor, Node:
datatype tag $=S \mid A$ vname aexp $\mid C$ bexp $\mid W$ bexp
datatype tree $=$ Node tag tree list \mid Branch tree tree
fun com-to-tree where
com-to-tree SKIP $=$ Node S []
com-to-tree $($ Assign $v a)=\operatorname{Node}(A v a)[]$
com-to-tree $($ Semi c1 c2) $)=$ Branch $($ com-to-tree c1) $($ com-to-tree c2 $)$
|com-to-tree (Cond bc1c2) $=$ Node (C b) [com-to-tree c1, com-to-tree c2]
com-to-tree (While bc) $=$ Node (W b) [com-to-tree $c]$
(a) Define an inverse function tree-to-com that transforms a tree back into a program. Note that not all trees represent an IMP program. Given a malformed tree you may return any program. (3 marks)
(b) Prove that tree-to-com (com-to-tree $c)=c .(2$ marks $)$
(c) Prove that $w f$-tree $t \Longrightarrow$ com-to-tree (tree-to-com t) $=t$. You will first need to define the predicate wf-tree that indicates if a tree is well formed in the sense that it represents an IMP program (e.g. an Assign node must have an empty list of subtrees). (6 marks)
(d) We now want to define a function Branch-assoc that transforms the tree to have sequences associated to the right:

Branch-assoc (Branch (Branch t1 t2) t3) $=$
Branch-assoc (Branch t1 (Branch t2 t3))
Branch-assoc (Branch (Node tls) t3) $=$ Branch (Node t (map Branch-assoc ls)) (Branch-assoc t3)
Branch-assoc (Node tls) =
Node t (map Branch-assoc ls)

Define such a function (using Isabelle's function command). To prove termination, you will need to define a measure on the tree that gets smaller with the transformation. It may be useful to use a lexicographic combination of size measures: in some recursive calls one measure decreases whereas in others the first measure stays the same but another
decreases. The start of the termination proof below uses size $_{1}$ and $s^{\text {size }} 2$ as placeholders for two measures in lexicographic combination. You may use the Isabelle provided function size that computes the number of constructors used in a value of any datatype (including, in particular, trees). (10 marks)

```
termination Branch-assoc
    apply (relation inv-image (less-than <*lex*> less-than) (\lambdat. (size 
```

(e) To prove that the transformation preserves the semantics, we first define a function that takes a function f and an IMP program, and applies f to all sequencing pairs in the program:

```
fun map-Semi where
    map-Semi f (Semi c1 c2) =f(map-Semi f c1) (map-Semi f c2)
| map-Semif (Cond b c1 c2) = Cond b (map-Semif c1) (map-Semif c2)
| map-Semi f (While b c) = While b (map-Semi f c)
| map-Semi f }x=
```

Now we can rewrite tree-to-com (Branch-assoc t), for any well-formed program t, as a map-Semi application:

```
wf-tree \(t \Longrightarrow\)
tree-to-com (Branch-assoc \(t)=\) map-Semi Semi-assoc1 \((\) tree-to-com \(t)\)
```

for a suitable Semi-assoc1 function. Define such a Semi-assoc1 function and then prove the theorem above. (10 marks)
(f) Now prove that the transformation preserves the semantics:

$$
\begin{aligned}
& (c, s) \Rightarrow s^{\prime} \Longrightarrow(\text { tree-to-com }(\text { Branch-assoc }(\text { com-to-tree } c)), s) \Rightarrow s^{\prime} \\
& (5 \text { marks })
\end{aligned}
$$

5 Compilation (12 marks)

Consider a lower-level label-based language LAB, which only supports assignments and goto commands to explicit labels in the program. Labels are identified by natural numbers.

```
type-synonym label \(=\) nat
```

datatype lcom $=$

> LAssign vname aexp
| Label label
| LCGoto bexp label
| LGoto label
type-synonym lprog $=$ lcom list
In this language, our 2 example programs max and factorial would be represented as:

```
definition
    lmax :: lprog where
    lmax \equiv [
        LCGoto (\lambdas.s "'A"\leqs"'B') 0,
        LAssign "'R" (\lambdas.s "'A'),
        LGoto 1,
        Label 0,
        LAssign " }\mp@subsup{R}{}{\prime\prime}(\lambdas.s "'B'\prime)
        Label 1]
definition
    lfactorial :: lprog where
    lfactorial \equiv[LAssign '"B''(\lambdas. 1),
            Label 1,
            LCGoto (\lambdas.s "'A" = 0) 0,
        LAssign " B" ( \lambdas.s " "B" * s "}\mp@subsup{A}{}{\prime\prime})
        LAssign " 'A" (\lambdas.s "'A" - 1),
        LGoto 1,
        Label 0]
```

Define a function compile that takes a program in the IMP language and compiles it into the LAB language, such that the following two lemmas hold:
compile $\max =l \max$
compile factorial $=l$ factorial.
You will need to define a helper function that takes an IMP program and the "current available label" and returns both the LAB program and a new label.

