
COMP4161 S2/2016
Advanced Topics in Software Verification

Assignment 3

This assignment starts on Friday, 2016-10-07 and is due on Sunday, 2016-
10-23, 23:59h. We will accept Isabelle .thy files only. In addition to this pdf
document, please refer to the provided Isabelle template for the definitions
and lemma statements.

The assignment is take-home. This does NOT mean you can work in groups.
Each submission is personal. For more information, see the plagiarism pol-
icy: https://student.unsw.edu.au/plagiarism

Submit using give on a CSE machine: give cs4161 a3 a3.thy

For all questions, you may prove your own helper lemmas, and you may use
lemmas proved earlier in other questions. You can also use automated tool
like sledghammer. If you can’t finish an earlier proof, use sorry to assume
that the result holds so that you can use it if you wish in a later proof. You
won’t be penalised in the later proof for using an earlier true result you were
unable to prove, and you’ll be awarded part marks for the earlier question
in accordance with the progress you made on it.

1 Induction (25 marks)

Consider the following mystery function:

fun
mystery-f :: nat ⇒ string ⇒ string

where
mystery-f 0 - = []
| mystery-f (Suc 0) a = a
| mystery-f k a =

(if k mod 2 = 0 then mystery-f (k div 2) (a @ a)
else mystery-f (k div 2) (a @ a) @ a)

(a) Explain in one sentence or two what this function is doing. Justify
your answer with a few representative examples, i.e. a few lemmas

mystery-f n s = t
for well chosen n, s and t that illustrates your guess about what the
function is doing. (3 marks)
Hint: Note that strings are lists of characters in Isabelle, and are

1

https://student.unsw.edu.au/plagiarism

abbreviated with the ′′ a ′′ notation, i.e. [CHR ′′a ′′, CHR ′′b ′′] is
abbreviated ′′ab ′′.

(b) We want to prove a few properties about this function that confirms
what it is doing.

(b1) What is mystery-f n [] equal to? Prove it in a lemma.

(b2) What is length (mystery-f n s) equal to? Prove it in a lemma.

(b3) What is mystery-f (n + m) s equal to in terms of mystery-f n s
and mystery-f m s? Prove it in a lemma.

Hint (for all the questions above): you may notice that this mystery
function is an optimised version of what you would intuitively de-
fine.You may want to define this more intuitive version, show that the
two definitions are equivalent, and then use your definition to prove
the lemmas above.
(9 marks)

Consider this new mystery function:

definition
mystery-g :: string ⇒ nat ⇒ string ⇒ string option

where
mystery-g c k s =
(if size c 6= 1 ∨ size s > k
then None
else Some (mystery-f (k − size s) c @ s))

(c) Explain in one sentence or two what this function is doing. Justify
your answer with a few representative examples, i.e. a few lemmas

mystery-g c k s = t
for well chosen c, k, s and t that illustrates your guess about what the
function is doing. (3 marks)
Hint: try for instance mystery-g ′′0 ′′ 8 ′′101 ′′

(d) Prove that mystery-g c k s = Some xs =⇒ length xs = k (3 marks)

(e) Prove the main property about mystery-g :

mystery-g [c] k s = Some xs =⇒
∃ zs. xs = zs @ s ∧ (k = length s ∨ set zs = {c})

(7 marks)

2

2 C verification: doubly-linked list (40 marks)

Consider the following C program defining insertion in a doubly-linked list
(with no data in nodes for simplicity):

struct node {

struct node *prev;

struct node *next;

};

/* insert node ’nd’ after node ’ptr’ */

void insert_after(struct node* nd, struct node* ptr) {

nd->prev = ptr;

nd->next = ptr->next;

if (ptr->next != 0) {

ptr->next->prev = nd;

}

ptr->next = nd;

}

The function insert-after nd q takes a new node nd and a pointer q supposed
to point to a node in an existing doubly-linked list. The function does not
return any value, but after its execution, the new node should have been
inserted after the node pointed by q in the doubly-linked list. For simplicity
we only look at a case where q points to the end of the doubly-linked list.

p

nd

q

NULL NULL

p1 p2

p

nd

q

NULL NULL

p1 p2

We want to prove that this program is correct, i.e. prove
{|insert-pre p xs q nd |} insert-after ′ nd q {|λ-. insert-post p xs nd |} (1)

for suitable precondition insert-pre and postcondition insert-post, where
insert-after ′ is the result parsing our C function insert-after inside Isabelle
and then applying the autocorres tool to make it nicer to reason about.

3

Precondition. The precondition states that there exists a valid, non-
empty doubly-linked list from a pointer p to the pointer q. It will also state
that the pointer nd to the new node to be inserted is not NULL, points to
a valid node, and does not point to a node already in the doubly-linked list:

insert-pre p xs q nd s =
(xs 6= [] ∧
is-dlist (is-valid-node-C s) (heap-node-C s) p xs q ∧
nd 6= NULL ∧ is-valid-node-C s nd ∧ nd /∈ set xs)

The functions heap-node-C and is-valid-node-C are given by the C parser
and provides the heap content and pointer validity respectively. The notion
of a valid doubly-linked list is defined with is-dlist vld hp p xs q stating
that there is a doubly-linked list of valid (according to vld) nodes starting
from p and finishing in q, and where xs is the list of all the pointers in this
doubly-linked list. The function is-dlist is defined in terms of path: there is
a path from p to the NULL pointer if we follow the next field and from q to
NULL if we follow the prev field:

is-dlist vld hp p xs q ≡
path vld hp next-C p xs NULL ∧ path vld hp prev-C q (rev xs) NULL

path vld hp nxt p [] q = (p = q)
path vld hp nxt p (x # xs) q =
(p 6= q ∧ vld p ∧ p 6= NULL ∧ p = x ∧ path vld hp nxt (nxt (hp p)) xs q)

Postcondition. The postcondition states that there is still a valid doubly-
linked list from a pointer p that now goes up to pointer nd, and contains
the initial list of pointers plus nd at its end:

insert-post p xs nd s =
is-dlist (is-valid-node-C s) (heap-node-C s) p (xs @ [nd]) nd

Proof. Here are a series of questions to guide you towards proving the
correctness of the insert-after C function. Note that if you manage to prove
the correctness lemma (1) using your own helper lemmas (with none of them
”sorried”), you will get full marks for this question (this means that partial
marks for progress towards solution will only be awarded if you follow the
lemmas below).

(a) Start to prove (1) by unfolding definitions and applying wp. This leads
to a large subgoal, with a lot of function updates (terms of the form
(f (x := y)) z). Find a function in the Isabelle library function updates
that will simplify your goal a bit more. (5 marks)

(b) The goal contains terms of the form path vld (hp(x := y)) n p xs q.
Prove:

4

x /∈ set xs =⇒ path vld (hp(x := y)) n p xs q = path vld hp n p xs q

Think again about the Isabelle lemma about function update. (5 marks)

(c) The goal also contains terms of the form path vld hp n p (xs @ ys) q.
To simplify it, we prove a series of helper lemmas:

(c1) Prove that the start of a doubly-linked list is in the set on point-
ers:

[[path vld hp n p xs q ; xs 6= []]] =⇒ p ∈ set xs

(2 marks)

(c2) Prove that a path is unique:

[[path vld hp n p xs q ; path vld hp n p ys q]] =⇒ xs = ys

(3 marks)

(c3) Prove a destruction rule for a path of an append list:

path vld hp n p (xs @ ys) q =⇒
∃ r . path vld hp n p xs r ∧ path vld hp n r ys q

You may want to use rules to eliminate meta operators: meta-allE,
meta-impE, meta-spec, meta-mp. (8 marks)

(c4) Using the lemma in-set-conv-decomp:(x ∈ set xs) = (∃ ys zs. xs
= ys @ x # zs) from Isabelle, prove:

path vld hp n (n (hp p)) xs q =⇒ p /∈ set xs

(5 marks)

(c5) Finally prove the value of a path of an append:

path vld hp n p (xs @ ys) q =
(path vld hp n p xs (if ys = [] then q else hd ys) ∧
path vld hp n (if ys = [] then q else hd ys) ys q ∧
set xs ∩ set ys = {} ∧ q /∈ set xs)

(7 marks)

(d) Using the lemmas path-append-last and path-upd finish the proof of (1).
Hint: try case distinction on ”rev xs”. (5 marks)

3 C verification: invariant (35 marks)

Consider the following C program:

5

unsigned int f(unsigned int a) {

unsigned int n = 0;

unsigned int m = 0;

unsigned int k = 0;

while (k < a) {

n++;

k += m + 1;

m += 2;

}

return n;

}

This program computes the square root of a (the return value r is the
smallest integer greater than or equal to the square root of a):

{|λ-. a ≤ SQ-MAX |} f ′ a
{|λr -. (0 < a −→ (r − 1) ∗ (r − 1) < a ∧ a ≤ r ∗ r) ∧ (a = 0 −→ r = 0)|}!

where SQ-MAX = (2 16 − 1)2.

(a) What is the invariant for the loop? Trace a few example computations
in your favourite programming language to discover the relationship
between the variables. (12 marks)

(b) What is a variant for the loop that guarantees that the loop termi-
nates? (5 marks)

(c) State the property of (a) as a (total correctness) Hoare triple (you may
need to reformulate it slightly), annotate the program with the above
invariant and variant and prove the Hoare triple. See the template file
for directions. Remember that you are dealing with a C program with
finite integers. (You can use automated tools like Sledghammer). (18
marks)

6

	Induction (25 marks)
	C verification: doubly-linked list (40 marks)
	C verification: invariant (35 marks)

