

COMP 4161

Data61 Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Ramana Kumar

Binary Search (java.util.Arrays)


```
public static int binarySearch(int[] a, int key) {
1:
2:
           int low = 0:
3.
           int high = a.length - 1;
4.
5:
           while (low <= high) {
6.
               int mid = (low + high) / 2;
7.
               int midVal = a[mid]:
8:
9:
               if (midVal < key)
                    low = mid + 1
10:
                else if (midVal > key)
11:
12:
                    high = mid -1;
13.
                else
14.
                    return mid: // kev found
15:
16.
            return -(low + 1); // kev not found.
17:
        }
```

6: int mid = (low + high) / 2;

http://googleresearch.blogspot.com/2006/06/ extra-extra-read-all-about-it-nearly.html

Organisatorials

When	Mon	10:00 - 11:30
	Thu	09:00 - 10:30

 Where
 Mon:
 Colombo LG02
 (B16-LG02)

 Thu:
 Webster 256
 (G14-256)

http://www.cse.unsw.edu.au/~cs4161/

About us

The trustworthy systems verification team

- → Functional correctness and security of the seL4 microkernel Security ↔ Isabelle/HOL model ↔ Haskell model ↔ C code ↔ Binary
- → 10 000 LOC / 500 000 lines of proof script; about 25 person years of effort
- → More: Cogent code/proof co-generation; CakeML verified compiler; etc.

Open Source http://sel4.systems https://cakeml.org

We are always embarking on exciting new projects. We offer

→ summer student scholarship projects

4 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

What you will learn

- $\label{eq:how-to-use}$ how to use a theorem prover
- → background, how it works
- → how to prove and specify
- \rightarrow how to reason about programs

Health Warning Theorem Proving is addictive

Prerequisites

This is an advanced course. It assumes knowledge in

- → Functional programming
- → First-order formal logic

The following program should make sense to you:

$$\begin{array}{ll} \mathsf{map} \ \mathsf{f} \ [] & = & [] \\ \mathsf{map} \ \mathsf{f} \ (\mathsf{x}:\mathsf{xs}) & = & \mathsf{f} \ \mathsf{x} : \ \mathsf{map} \ \mathsf{f} \ \mathsf{xs} \end{array}$$

You should be able to read and understand this formula:

$$\exists x. \ (P(x) \longrightarrow \forall x. \ P(x))$$

Content — Using Theorem Provers

Pough timeling

	Rough timeline
➔ Intro & motivation, getting started	[today]
 → Foundations & Principles Lambda Calculus, natural deduction Higher Order Logic Term rewriting 	[1,2] [3 ^a] [4]
 → Proof & Specification Techniques Inductively defined sets, rule induction Datatypes, recursion, induction Hoare logic, proofs about programs, C verification (mid-semester break) Writing Automated Proof Methods Isar, codegen, typeclasses, locales 	[5] [6, 7] [8 ^b ,9] [10] [11 ^c ,12]

^aa1 due; ^ba2 due; ^ca3 due

7 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

What you should do to have a chance at succeeding

- → attend lectures
- → try Isabelle early
- \rightarrow redo all the demos alone
- ightarrow try the exercises/homework we give, when we do give some

→ DO NOT CHEAT

- Assignments and exams are take-home. This does NOT mean you can work in groups. Each submission is personal.
- For more info, see Plagiarism Policy^a

a https://student.unsw.edu.au/plagiarism

Credits

some material (in using-theorem-provers part) shamelessly stolen from

Tobias Nipkow, Larry Paulson, Markus Wenzel

David Basin, Burkhardt Wolff

Don't blame them, errors are ours

What is a proof?

(Merriam-Webster)

to prove

- → from Latin probare (test, approve, prove)
- → to learn or find out by experience (archaic)
- → to establish the existence, truth, or validity of (by evidence or logic) prove a theorem, the charges were never proved in court

pops up everywhere

- → politics (weapons of mass destruction)
- → courts (beyond reasonable doubt)
- → religion (god exists)
- → science (cold fusion works)

What is a mathematical proof?

In mathematics, a proof is a demonstration that, given certain axioms, some statement of interest is necessarily true. (Wikipedia)

Example: $\sqrt{2}$ is not rational.

Proof: assume there is $r \in \mathbb{Q}$ such that $r^2 = 2$. Hence there are mutually prime p and q with $r = \frac{p}{q}$. Thus $2q^2 = p^2$, i.e. p^2 is divisible by 2. 2 is prime, hence it also divides p, i.e. p = 2s. Substituting this into $2q^2 = p^2$ and dividing by 2 gives $q^2 = 2s^2$. Hence, q is also divisible by 2. Contradiction. Qed.

Nice, but..

- → still not rigorous enough for some
 - what are the rules?
 - what are the axioms?
 - how big can the steps be?
 - what is obvious or trivial?
- \rightarrow informal language, easy to get wrong
- ightarrow easy to miss something, easy to cheat

Theorem. A cat has nine tails.

Proof. No cat has eight tails. Since one cat has one more tail than no cat, it must have nine tails.

What is a formal proof?

A derivation in a formal calculus

Example: $A \land B \longrightarrow B \land A$ derivable in the following system **Rules:** $\frac{X \in S}{S \vdash X}$ (assumption) $\frac{S \cup \{X\} \vdash Y}{S \vdash X \longrightarrow Y}$ (impl) $\frac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y} \text{ (conjl)} \quad \frac{S \cup \{X, Y\} \vdash Z}{S \cup \{X \land Y\} \vdash Z} \text{ (conjE)}$ Proof: $\{A, B\} \vdash B$ 1. (by assumption) 2. $\{A, B\} \vdash A$ (by assumption) 3. $\{A, B\} \vdash B \land A$ (by conjl with 1 and 2) 4. $\{A \land B\} \vdash B \land A$ (by conjE with 3) $\{\} \vdash A \land B \longrightarrow B \land A$ (by impl with 4) 5.

What is a theorem prover?

Implementation of a formal logic on a computer.

- → fully automated (propositional logic)
- → automated, but not necessarily terminating (first order logic)
- → with automation, but mainly interactive (higher order logic)
- ➔ based on rules and axioms
- → can deliver proofs

There are other (algorithmic) verification tools:

- \rightarrow model checking, static analysis, ...
- \rightarrow usually do not deliver proofs
- → See COMP3153: Algorithmic Verification

Why theorem proving?

- ➔ Analysing systems/programs thoroughly
- → Finding design and specification errors early
- → High assurance (mathematical, machine checked proof)
- ➔ it's not always easy
- → it's fun

Main theorem proving system for this course

Isabelle

 \rightarrow used here for applications, learning how to prove

16 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

What is Isabelle?

A generic interactive proof assistant

→ generic:

not specialised to one particular logic (two large developments: HOL and ZF, will mainly use HOL)

→ interactive:

more than just yes/no, you can interactively guide the system

→ proof assistant:

helps to explore, find, and maintain proofs

Why Isabelle?

→ free

- \rightarrow widely used systems
- \rightarrow active development
- $\label{eq:high-expressiveness}$ and automation
- $\label{eq:reasonably}$ reasonably easy to use
- \rightarrow (and because we know it best ;-))

19 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

DATA

No, because:

- 1 hardware could be faulty
- $\ensuremath{\textcircled{}}$ operating system could be faulty
- ③ implementation runtime system could be faulty
- 4 compiler could be faulty
- $\ensuremath{\textcircled{}}$ implementation could be faulty
- 6 logic could be inconsistent
- $\ensuremath{\mathbb C}$ theorem could mean something else

DATA

No, but:

probability for

- \clubsuit OS and H/W issues reduced by using different systems
- \rightarrow runtime/compiler bugs reduced by using different compilers
- → faulty implementation reduced by having the right prover architecture
- $\label{eq:static}$ inconsistent logic reduced by implementing and analysing it
- $\label{eq:starses}$ wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than manual proof

Soundness architectures careful implementation

PVS

HOL4 Isabelle

LCF approach, small proof kernel

explicit proofs + proof checker

Coq Twelf Isabelle HOL4

Meta Logic

Meta language:

The language used to talk about another language.

Examples:

English in a Spanish class, English in an English class

Meta logic:

The logic used to formalize another logic

Example:

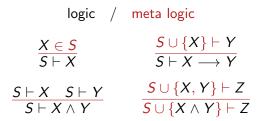
Mathematics used to formalize derivations in formal logic

Meta Logic – Example

Syntax:

Formulae:
$$F ::= V | F \longrightarrow F | F \land F |$$
 False
 $V ::= [A - Z]$

Derivable: $S \vdash X$ X a formula, S a set of formulae



Isabelle's Meta Logic

$\land \implies \lambda$

25 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Syntax: $\bigwedge x. F$ (*F* another meta level formula) in ASCII: !!x. F

- ightarrow universal quantifier on the meta level
- \rightarrow used to denote parameters
- \rightarrow example and more later

\Rightarrow Syntax: $A \Longrightarrow B$ in ASCII: $A \Longrightarrow B$ (A, B other meta level formulae)

Binds to the right:

$$A \Longrightarrow B \Longrightarrow C = A \Longrightarrow (B \Longrightarrow C)$$

Abbreviation:

$$\llbracket A; B \rrbracket \Longrightarrow C \quad = \quad A \Longrightarrow B \Longrightarrow C$$

- \rightarrow read: A and B implies C
- ightarrow used to write down rules, theorems, and proof states

Example: a theorem

mathematics:

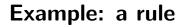
if
$$x < 0$$
 and $y < 0$, then $x + y < 0$

variation:

formal logic: $\vdash x < 0 \land y < 0 \longrightarrow x + y < 0$ $x < 0; y < 0 \vdash x + y < 0$

Isabelle: variation: variation:

lemma " $x < 0 \land y < 0 \longrightarrow x + y < 0$ " lemma " $[x < 0; y < 0] \implies x + y < 0$ " lemma assumes "x < 0" and "y < 0" shows "x + y < 0"



ogic:
$$\frac{X Y}{X \wedge Y}$$

$$S \vdash X$$

variation:

L

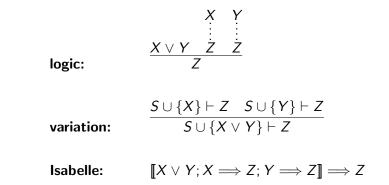
$$rac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y}$$

Isabelle: [X; Y

 $\llbracket X;Y\rrbracket \Longrightarrow X\wedge Y$

29 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

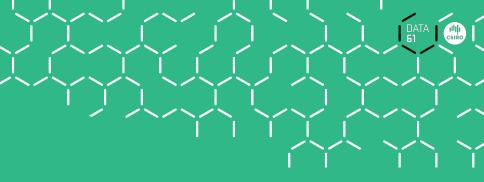
Example: a rule with nested implication



30 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Syntax: $\lambda x. F$ (*F* another meta level formula) in ASCII: $\chi x. F$

- \rightarrow lambda abstraction
- \rightarrow used for functions in object logics
- \rightarrow used to encode bound variables in object logics
- $\label{eq:states}$ more about this in the next lecture



Enough Theory!

Getting started with Isabelle

System Architecture

Prover IDE (jEdit) – user interface

HOL, ZF - object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

User can access all layers!

System Requirements

- → Linux, Windows, or MacOS X (10.7 +)
- → Standard ML

(PolyML fastest, SML/NJ supports more platforms)

→ Java (for jEdit)

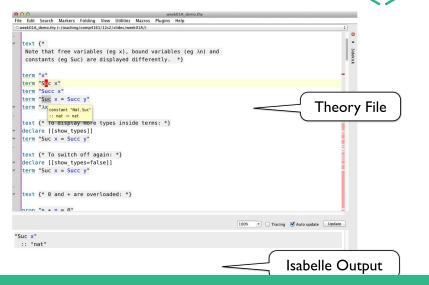
Premade packages for Linux, Mac, and Windows + info on: http://mirror.cse.unsw.edu.au/pub/isabelle/

Documentation

Available from http://isabelle.in.tum.de

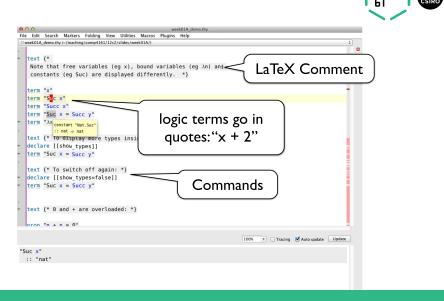
- → Learning Isabelle
 - Tutorial on Isabelle/HOL (LNCS 2283)
 - Tutorial on Isar
 - Tutorial on Locales
- ➔ Reference Manuals
 - Isabelle/Isar Reference Manual
 - Isabelle Reference Manual
 - Isabelle System Manual
- → Reference Manuals for Object-Logics

	erech M		Fables.	10	Listit's				demo.thy							
ile Edit S week01A_de							Plugins	нер								:
weekolA_de	1110.triy (~/	teaching	//comp+1	01/1252	silues/we	eko1A/)										
text {	ĸ															
			ariabl	or 10	a v)	hound	variat	loc (eg λn)	and						
	ants (e								eg All)	anu						
consta	ants (e	ey su	c) are	arsh	tayeu	uritei	encry	.1								
term "	e **															
term "																
term "																
term "	Suc x =	= Suc	c v"													
term "																
		inc wa														
text {	To d:	Ispla	y more	type	s insi	de ter	ms: *)									
declare	[[sho	w_ty	pes]]													
term "S	Suc x =	= Suc	cy"													
text {	* To sv	vitch	off a	gain:	*}											
declar	e [[sho	w_ty	pes=fa	lse]]												
term "	Suc x =	= Suc	су"													
																_
																_
text {	∗ θ and	1 + a	re ove	rload	ed: *}											_
Inron "	n + n =	= 0"														_
											100	< •	Tracing	Auto I	undate	Update
													C maxing	- O Mato I	opoure	
Suc ×"																
:: "nat																

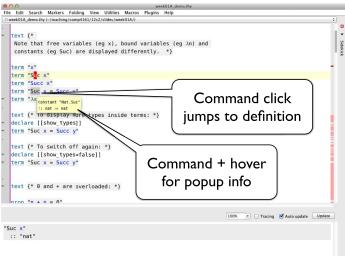


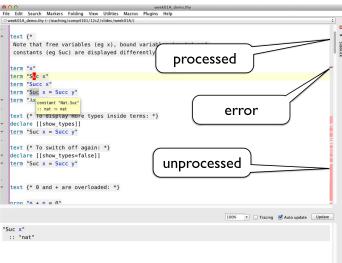
DATA

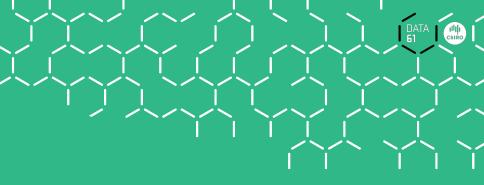
37 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



DATA







Demo

Exercises

- Download and install Isabelle from http://mirror.cse.unsw.edu.au/pub/isabelle/
- \rightarrow Step through the demo files from the lecture web page
- → Write your own theory file, look at some theorems in the library, try 'find_theorems'
- → How many theorems can help you if you need to prove something containing the term "Suc(Suc x)"?
- → What is the name of the theorem for associativity of addition of natural numbers in the library?