COMP 4161

> Data61 Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Ramana Kumar

Binary Search
 (java.util.Arrays)

```
public static int binarySearch(int[] a, int key) {
    int low = 0;
    int high = a.length - 1;
    while (low <= high) {
        int mid = (low + high) / 2;
        int midVal = a[mid];
        if (midVal < key)
            low = mid + 1
        else if (midVal > key)
            high = mid - 1;
        else
            return mid; // key found
    }
    return -(low + 1); // key not found.
}
```


Binary Search
 (java.util.Arrays)

```
public static int binarySearch(int[] a, int key) {
    int low = 0;
    int high = a.length - 1;
    while (low <= high) {
        int mid = (low + high) / 2;
        int midVal = a[mid];
        if (midVal < key)
            low = mid + 1
        else if (midVal > key)
            high = mid - 1;
        else
            return mid; // key found
    }
    return -(low + 1); // key not found.
}
```

$6:$
int mid = (low + high) / 2;
http://googleresearch.blogspot.com/2006/06/ extra-extra-read-all-about-it-nearly.html

Organisatorials

When	Mon	10:00 - 11:30
	Thu	09:00 - 10:30

Where Mon: Colombo LG02 (B16-LG02)
Thu: Webster 256 (G14-256)
http://www.cse.unsw.edu.au/~cs4161/

About us

The trustworthy systems verification team
\rightarrow Functional correctness and security of the seL4 microkernel Security \leftrightarrow Isabelle/HOL model \leftrightarrow Haskell model \leftrightarrow C code \leftrightarrow Binary

About us

The trustworthy systems verification team
\rightarrow Functional correctness and security of the seL4 microkernel Security \leftrightarrow Isabelle/HOL model \leftrightarrow Haskell model \leftrightarrow C code \leftrightarrow Binary
$\rightarrow 10000$ LOC / 500000 lines of proof script; about 25 person years of effort

About us

The trustworthy systems verification team
\rightarrow Functional correctness and security of the seL4 microkernel Security \leftrightarrow Isabelle/HOL model \leftrightarrow Haskell model \leftrightarrow C code \leftrightarrow Binary
$\rightarrow 10000$ LOC / 500000 lines of proof script; about 25 person years of effort
\rightarrow More: Cogent code/proof co-generation; CakeML verified compiler; etc.

About us

The trustworthy systems verification team
\rightarrow Functional correctness and security of the seL4 microkernel Security \leftrightarrow Isabelle/HOL model \leftrightarrow Haskell model \leftrightarrow C code \leftrightarrow Binary
$\rightarrow 10000$ LOC / 500000 lines of proof script; about 25 person years of effort
\rightarrow More: Cogent code/proof co-generation; CakeML verified compiler; etc.

Open Source
http://sel4.systems
https://cakeml.org

About us

The trustworthy systems verification team
\rightarrow Functional correctness and security of the seL4 microkernel Security \leftrightarrow Isabelle/HOL model \leftrightarrow Haskell model \leftrightarrow C code \leftrightarrow Binary
$\rightarrow 10000$ LOC / 500000 lines of proof script; about 25 person years of effort
\rightarrow More: Cogent code/proof co-generation; CakeML verified compiler; etc.

> Open Source
> http://sel4.systems
> https://cakeml.org

We are always embarking on exciting new projects.

We offer

\rightarrow summer student scholarship projects
\rightarrow honours and PhD theses
\rightarrow research assistant and verification engineer positions

What you will learn

\rightarrow how to use a theorem prover

What you will learn

\rightarrow how to use a theorem prover
\rightarrow background, how it works

What you will learn

\rightarrow how to use a theorem prover
\rightarrow background, how it works
\rightarrow how to prove and specify

What you will learn

\rightarrow how to use a theorem prover
\rightarrow background, how it works
\rightarrow how to prove and specify
\rightarrow how to reason about programs

What you will learn

\rightarrow how to use a theorem prover
\rightarrow background, how it works
\rightarrow how to prove and specify
\rightarrow how to reason about programs

Health Warning

Theorem Proving is addictive

Prerequisites

This is an advanced course. It assumes knowledge in
\rightarrow Functional programming
\rightarrow First-order formal logic

Prerequisites

This is an advanced course. It assumes knowledge in
\rightarrow Functional programming
\rightarrow First-order formal logic

The following program should make sense to you:

$$
\begin{array}{ll}
\operatorname{map} f[] & =[] \\
\operatorname{map} f(x: x s) & =f x: \operatorname{map} f \times s
\end{array}
$$

Prerequisites

This is an advanced course. It assumes knowledge in
\rightarrow Functional programming
\rightarrow First-order formal logic

The following program should make sense to you:

$$
\begin{array}{ll}
\operatorname{map} f[] & =[] \\
\operatorname{map} f(x: x s) & =f x: \operatorname{map} f \times s
\end{array}
$$

You should be able to read and understand this formula:

$$
\exists x .(P(x) \longrightarrow \forall x . P(x))
$$

Content — Using Theorem Provers

\rightarrow Intro \& motivation, getting started

Content - Using Theorem Provers

\rightarrow Intro \& motivation, getting started
\rightarrow Foundations \& Principles

- Lambda Calculus, natural deduction
- Higher Order Logic
- Term rewriting

Content - Using Theorem Provers

\rightarrow Intro \& motivation, getting started
\rightarrow Foundations \& Principles

- Lambda Calculus, natural deduction
- Higher Order Logic
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Hoare logic, proofs about programs, C verification
- Writing Automated Proof Methods
- Isar, codegen, typeclasses, locales

Content - Using Theorem Provers

Rough timeline
[today]
\rightarrow Foundations \& Principles

- Lambda Calculus, natural deduction
- Higher Order Logic[3a]
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Hoare logic, proofs about programs, C verification
- (mid-semester break)
- Writing Automated Proof Methods
- Isar, codegen, typeclasses, locales

What you should do to have a chance at succeeding

What you should do to have a chance at succeeding

\rightarrow attend lectures

What you should do to have a chance at succeeding

\rightarrow attend lectures
\rightarrow try Isabelle early

What you should do to have a chance at succeeding

\rightarrow attend lectures
\rightarrow try Isabelle early
\rightarrow redo all the demos alone

What you should do to have a chance at succeeding

\rightarrow attend lectures
\rightarrow try Isabelle early
\rightarrow redo all the demos alone
\rightarrow try the exercises/homework we give, when we do give some

What you should do to have a chance at succeeding

\rightarrow attend lectures
\rightarrow try Isabelle early
\rightarrow redo all the demos alone
\rightarrow try the exercises/homework we give, when we do give some
\rightarrow DO NOT CHEAT

- Assignments and exams are take-home. This does NOT mean you can work in groups. Each submission is personal.
- For more info, see Plagiarism Policy ${ }^{a}$

[^0]
Credits

some material (in using-theorem-provers part) shamelessly stolen from

Tobias Nipkow, Larry Paulson, Markus Wenzel

David Basin, Burkhardt Wolff

Don't blame them, errors are ours

What is a proof?

to prove

What is a proof?

to prove

\rightarrow from Latin probare (test, approve, prove)

What is a proof?

to prove

\rightarrow from Latin probare (test, approve, prove)
\rightarrow to learn or find out by experience (archaic)

What is a proof?

to prove

\rightarrow from Latin probare (test, approve, prove)
\rightarrow to learn or find out by experience (archaic)
\rightarrow to establish the existence, truth, or validity of (by evidence or logic) prove a theorem, the charges were never proved in court

What is a proof?

to prove

\rightarrow from Latin probare (test, approve, prove)
\rightarrow to learn or find out by experience (archaic)
\rightarrow to establish the existence, truth, or validity of (by evidence or logic) prove a theorem, the charges were never proved in court
pops up everywhere
\rightarrow politics (weapons of mass destruction)
\rightarrow courts (beyond reasonable doubt)
\rightarrow religion (god exists)
\rightarrow science (cold fusion works)

What is a mathematical proof?

In mathematics, a proof is a demonstration that, given certain axioms, some statement of interest is necessarily true. (Wikipedia)

Example: $\sqrt{2}$ is not rational.
Proof:

What is a mathematical proof?

In mathematics, a proof is a demonstration that, given certain axioms, some statement of interest is necessarily true. (Wikipedia)
Example: $\sqrt{2}$ is not rational.
Proof: assume there is $r \in \mathbb{Q}$ such that $r^{2}=2$.
Hence there are mutually prime p and q with $r=\frac{p}{q}$.
Thus $2 q^{2}=p^{2}$, i.e. p^{2} is divisible by 2 .
2 is prime, hence it also divides p, i.e. $p=2 s$.
Substituting this into $2 q^{2}=p^{2}$ and dividing by 2 gives $q^{2}=2 s^{2}$. Hence, q is also divisible by 2. Contradiction. Qed.

Nice, but..

\rightarrow still not rigorous enough for some

- what are the rules?
- what are the axioms?
- how big can the steps be?
- what is obvious or trivial?
\rightarrow informal language, easy to get wrong
\rightarrow easy to miss something, easy to cheat

Nice, but..

\rightarrow still not rigorous enough for some

- what are the rules?
- what are the axioms?
- how big can the steps be?
- what is obvious or trivial?
\rightarrow informal language, easy to get wrong
\rightarrow easy to miss something, easy to cheat
Theorem. A cat has nine tails.
Proof. No cat has eight tails. Since one cat has one more tail than no cat, it must have nine tails.

What is a formal proof?

A derivation in a formal calculus

What is a formal proof?

A derivation in a formal calculus
Example: $A \wedge B \longrightarrow B \wedge A$ derivable in the following system
Rules: $\frac{X \in S}{S \vdash X}$ (assumption) $\frac{S \cup\{X\} \vdash Y}{S \vdash X \longrightarrow Y}$ (impl)

$$
\frac{S \vdash X S \vdash Y}{S \vdash X \wedge Y} \text { (conjl) } \frac{S \cup\{X, Y\} \vdash Z}{S \cup\{X \wedge Y\} \vdash Z} \text { (conjE) }
$$

What is a formal proof?

A derivation in a formal calculus
Example: $A \wedge B \longrightarrow B \wedge A$ derivable in the following system
Rules: $\frac{X \in S}{S \vdash X}$ (assumption) $\frac{S \cup\{X\} \vdash Y}{S \vdash X \longrightarrow Y}$ (impl)

$$
\frac{S \vdash X S \vdash Y}{S \vdash X \wedge Y} \text { (conjl) } \quad \frac{S \cup\{X, Y\} \vdash Z}{S \cup\{X \wedge Y\} \vdash Z} \text { (conjE) }
$$

Proof:

1.	$\{A, B\} \vdash B$	(by assumption)
2.	$\{A, B\} \vdash A$	(by assumption)
3.	$\{A, B\} \vdash B \wedge A$	(by conjl with 1 and 2)
4.	$\{A \wedge B\} \vdash B \wedge A$	(by conjE with 3)
5.	$\} \vdash A \wedge B \longrightarrow B \wedge A$	(by impl with 4)

What is a theorem prover?

Implementation of a formal logic on a computer.
\rightarrow fully automated (propositional logic)
\rightarrow automated, but not necessarily terminating (first order logic)
\rightarrow with automation, but mainly interactive (higher order logic)

What is a theorem prover?

Implementation of a formal logic on a computer.
\rightarrow fully automated (propositional logic)
\rightarrow automated, but not necessarily terminating (first order logic)
\rightarrow with automation, but mainly interactive (higher order logic)
\rightarrow based on rules and axioms
\rightarrow can deliver proofs

What is a theorem prover?

Implementation of a formal logic on a computer.
\rightarrow fully automated (propositional logic)
\rightarrow automated, but not necessarily terminating (first order logic)
\rightarrow with automation, but mainly interactive (higher order logic)
\rightarrow based on rules and axioms
\rightarrow can deliver proofs
There are other (algorithmic) verification tools:
\rightarrow model checking, static analysis, ...
\rightarrow usually do not deliver proofs
\rightarrow See COMP3153: Algorithmic Verification

Why theorem proving?

\rightarrow Analysing systems/programs thoroughly

Why theorem proving?

\rightarrow Analysing systems/programs thoroughly
\rightarrow Finding design and specification errors early

Why theorem proving?

\rightarrow Analysing systems/programs thoroughly
\rightarrow Finding design and specification errors early
\rightarrow High assurance (mathematical, machine checked proof)

Why theorem proving?

\rightarrow Analysing systems/programs thoroughly
\rightarrow Finding design and specification errors early
\rightarrow High assurance (mathematical, machine checked proof)
\rightarrow it's not always easy
\rightarrow it's fun

Main theorem proving system for this course

Isabelle
\rightarrow used here for applications, learning how to prove

What is Isabelle?

A generic interactive proof assistant

What is Isabelle?

A generic interactive proof assistant
\rightarrow generic:
not specialised to one particular logic
(two large developments: HOL and ZF , will mainly use HOL)

What is Isabelle?

A generic interactive proof assistant
\rightarrow generic:
not specialised to one particular logic
(two large developments: HOL and ZF , will mainly use HOL)
\rightarrow interactive:
more than just yes/no, you can interactively guide the system

What is Isabelle?

A generic interactive proof assistant
\rightarrow generic:
not specialised to one particular logic
(two large developments: HOL and ZF , will mainly use HOL)
\rightarrow interactive:
more than just yes/no, you can interactively guide the system
\rightarrow proof assistant:
helps to explore, find, and maintain proofs

Why Isabelle?

\rightarrow free
\rightarrow widely used systems
\rightarrow active development
\rightarrow high expressiveness and automation
\rightarrow reasonably easy to use

Why Isabelle?

\rightarrow free
\rightarrow widely used systems
\rightarrow active development
\rightarrow high expressiveness and automation
\rightarrow reasonably easy to use
\rightarrow (and because we know it best ;-))

If I prove it on the computer, it is correct, right?

If I prove it on the computer, it is correct, right?

No, because:

If I prove it on the computer, it is correct, right?

No, because:
(1) hardware could be faulty

If I prove it on the computer, it is correct, right?

No, because:
(1) hardware could be faulty
(2) operating system could be faulty

If I prove it on the computer, it is correct, right?

No, because:
(1) hardware could be faulty
(2) operating system could be faulty
(3) implementation runtime system could be faulty

If I prove it on the computer, it is correct, right?

No, because:
(1) hardware could be faulty
(2) operating system could be faulty
(3) implementation runtime system could be faulty
(4) compiler could be faulty

If I prove it on the computer, it is correct, right?

No, because:
(1) hardware could be faulty
(2) operating system could be faulty
(3) implementation runtime system could be faulty
(4) compiler could be faulty
(5) implementation could be faulty

If I prove it on the computer, it is correct, right?

No, because:
(1) hardware could be faulty
(2) operating system could be faulty
(3) implementation runtime system could be faulty
(4) compiler could be faulty
(5) implementation could be faulty
(6) logic could be inconsistent

If I prove it on the computer, it is correct, right?

No, because:
(1) hardware could be faulty
(2) operating system could be faulty
(3) implementation runtime system could be faulty
(4) compiler could be faulty
(5) implementation could be faulty
(6) logic could be inconsistent
(7) theorem could mean something else

If I prove it on the computer, it is correct, right?

No, but:

If I prove it on the computer, it is correct, right?

No, but:
probability for
$\rightarrow \mathrm{OS}$ and H / W issues reduced by using different systems

If I prove it on the computer, it is correct, right?

No, but:
probability for
\rightarrow OS and H / W issues reduced by using different systems
\rightarrow runtime/compiler bugs reduced by using different compilers

If I prove it on the computer, it is correct, right?

No, but:
probability for
$\rightarrow \mathrm{OS}$ and H / W issues reduced by using different systems
\rightarrow runtime/compiler bugs reduced by using different compilers
\rightarrow faulty implementation reduced by having the right prover architecture

If I prove it on the computer, it is correct, right?

No, but:
probability for
$\rightarrow \mathrm{OS}$ and H / W issues reduced by using different systems
\rightarrow runtime/compiler bugs reduced by using different compilers
\rightarrow faulty implementation reduced by having the right prover architecture
\rightarrow inconsistent logic reduced by implementing and analysing it

If I prove it on the computer, it is correct, right?

No, but:
probability for
$\rightarrow \mathrm{OS}$ and H / W issues reduced by using different systems
\rightarrow runtime/compiler bugs reduced by using different compilers
\rightarrow faulty implementation reduced by having the right prover architecture
\rightarrow inconsistent logic reduced by implementing and analysing it
\rightarrow wrong theorem reduced by expressive/intuitive logics

If I prove it on the computer, it is correct, right?

No, but:
probability for
$\rightarrow \mathrm{OS}$ and H / W issues reduced by using different systems
\rightarrow runtime/compiler bugs reduced by using different compilers
\rightarrow faulty implementation reduced by having the right prover architecture
\rightarrow inconsistent logic reduced by implementing and analysing it
\rightarrow wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than manual proof

If I prove it on the computer, it is correct, right?

Soundness architectures
careful implementation
PVS

If I prove it on the computer, it is correct, right?

Soundness architectures
careful implementation
PVS
LCF approach, small proof kernel
HOL4
Isabelle

If I prove it on the computer, it is correct, right?

Soundness architectures
careful implementation
PVS
LCF approach, small proof kernel
HOL4
Isabelle
explicit proofs + proof checker
Coq
Twelf
Isabelle
HOL4

Meta Logic

Meta language:

The language used to talk about another language.

Meta Logic

Meta language:

The language used to talk about another language.

Examples:

English in a Spanish class, English in an English class

Meta Logic

Meta language:
The language used to talk about another language.
Examples:
English in a Spanish class, English in an English class
Meta logic:
The logic used to formalize another logic
Example:
Mathematics used to formalize derivations in formal logic

Meta Logic - Example

Formulae: $\quad F::=V|F \longrightarrow F| F \wedge F \mid$ False
Syntax:

$$
V::=[A-Z]
$$

Derivable: $\quad S \vdash X \quad X$ a formula, S a set of formulae

Meta Logic - Example

Formulae: $F::=V|F \longrightarrow F| F \wedge F \mid$ False
Syntax:

$$
V::=[A-Z]
$$

Derivable: $\quad S \vdash X \quad X$ a formula, S a set of formulae

$$
\begin{array}{cc}
\text { logic } / & \text { meta logic } \\
\frac{X \in S}{S \vdash X} & \frac{S \cup\{X\} \vdash Y}{S \vdash X \longrightarrow Y} \\
\frac{S \vdash X S \vdash Y}{S \vdash X \wedge Y} & \frac{S \cup\{X, Y\} \vdash Z}{S \cup\{X \wedge Y\} \vdash Z}
\end{array}
$$

Isabelle's Meta Logic

Λ

λ

Syntax: $\quad \bigwedge x . F \quad$ (F another meta level formula) in ASCII: !!x. F

Syntax: $\bigwedge x . F \quad$ (F another meta level formula) in ASCII: !!x. F

\rightarrow universal quantifier on the meta level
\rightarrow used to denote parameters
\rightarrow example and more later

Syntax: $A \Longrightarrow B \quad(A, B$ other meta level formulae)
 in ASCII: $A=B B$

Syntax: $\quad A \Longrightarrow B \quad$ (A, B other meta level formulae)
in ASCII: A $==\mathrm{B}$
Binds to the right:

$$
A \Longrightarrow B \Longrightarrow C=A \Longrightarrow(B \Longrightarrow C)
$$

Abbreviation:

$$
\llbracket A ; B \rrbracket \Longrightarrow C=A \Longrightarrow B \Longrightarrow C
$$

\rightarrow read: A and B implies C
\rightarrow used to write down rules, theorems, and proof states

Example: a theorem

mathematics: if $x<0$ and $y<0$, then $x+y<0$

Example: a theorem

mathematics: if $x<0$ and $y<0$, then $x+y<0$
formal logic: $\quad \vdash x<0 \wedge y<0 \longrightarrow x+y<0$
variation: $\quad x<0 ; y<0 \vdash x+y<0$

Example: a theorem

mathematics: if $x<0$ and $y<0$, then $x+y<0$
formal logic: $\quad \vdash x<0 \wedge y<0 \longrightarrow x+y<0$
variation:
$x<0 ; y<0 \vdash x+y<0$
Isabelle:
variation:
lemma " $x<0 \wedge y<0 \longrightarrow x+y<0$ "
lemma " $\llbracket x<0 ; y<0 \rrbracket \Longrightarrow x+y<0$ "

Example: a theorem

mathematics: if $x<0$ and $y<0$, then $x+y<0$
formal logic: $\quad \vdash x<0 \wedge y<0 \longrightarrow x+y<0$
variation:
$x<0 ; y<0 \vdash x+y<0$
Isabelle:
variation:
variation:

$$
\begin{aligned}
& \text { lemma " } x<0 \wedge y<0 \longrightarrow x+y<0 \text { " } \\
& \text { lemma " } \llbracket x<0 ; y<0 \rrbracket \Longrightarrow x+y<0 \text { " } \\
& \text { lemma } \\
& \text { assumes " } x<0 \text { " and " } y<0 \text { " shows " } x+y<0 \text { " }
\end{aligned}
$$

Example: a rule

logic:

$$
\frac{X \quad Y}{X \wedge Y}
$$

Example: a rule

logic:
$\frac{X \quad Y}{X \wedge Y}$
variation: $\frac{S \vdash X S \vdash Y}{S \vdash X \wedge Y}$

Example: a rule

logic:
$\frac{X \quad Y}{X \wedge Y}$
variation: $\frac{S \vdash X S \vdash Y}{S \vdash X \wedge Y}$

Isabelle: $\quad \llbracket X ; Y \rrbracket \Longrightarrow X \wedge Y$

Example: a rule with nested implication

logic:

Example: a rule with nested implication

logic:

variation:

$$
\frac{S \cup\{X\} \vdash Z \quad S \cup\{Y\} \vdash Z}{S \cup\{X \vee Y\} \vdash Z}
$$

Example: a rule with nested implication

logic:

variation: $\quad S \cup\{X \vee Y\} \vdash Z$

Isabelle:

$$
\llbracket X \vee Y ; X \Longrightarrow Z ; Y \Longrightarrow Z \rrbracket \Longrightarrow Z
$$

λ

Syntax: $\quad \lambda x . F \quad(F$ another meta level formula)
in ASCII: \%x. F

Syntax: $\quad \lambda x . F \quad(F$ another meta level formula) in ASCII: \%x. F
\rightarrow lambda abstraction
\rightarrow used for functions in object logics
\rightarrow used to encode bound variables in object logics
\rightarrow more about this in the next lecture

Getting started with Isabelle

System Architecture

Isabelle - generic, interactive theorem prover

System Architecture

Isabelle - generic, interactive theorem prover
Standard ML - logic implemented as ADT

System Architecture

HOL, ZF - object-logics
Isabelle - generic, interactive theorem prover
Standard ML - logic implemented as ADT

System Architecture

Prover IDE (jEdit) - user interface

HOL, ZF - object-logics
Isabelle - generic, interactive theorem prover
Standard ML - logic implemented as ADT

System Architecture

Prover IDE (jEdit) - user interface
HOL, ZF - object-logics
Isabelle - generic, interactive theorem prover
Standard ML - logic implemented as ADT
User can access all layers!

System Requirements

\rightarrow Linux, Windows, or MacOS X (10.7 +)
\rightarrow Standard ML
(PolyML fastest, SML/NJ supports more platforms)
\rightarrow Java (for jEdit)

Premade packages for Linux, Mac, and Windows + info on: http://mirror.cse.unsw.edu.au/pub/isabelle/

Documentation

Available from http://isabelle.in.tum.de
\rightarrow Learning Isabelle

- Tutorial on Isabelle/HOL (LNCS 2283)
- Tutorial on Isar
- Tutorial on Locales
\rightarrow Reference Manuals
- Isabelle/Isar Reference Manual
- Isabelle Reference Manual
- Isabelle System Manual
\rightarrow Reference Manuals for Object-Logics

jEdit/PIDE

jEdit/PIDE

Isabelle Output

jEdit/PIDE

jEdit/PIDE

jEdit/PIDE

Demo

$$
1
$$

1
IATA

III 1.
cairo
I

相

!

(

I

Exercises

\rightarrow Download and install Isabelle from http://mirror.cse.unsw.edu.au/pub/isabelle/
\rightarrow Step through the demo files from the lecture web page
\rightarrow Write your own theory file, look at some theorems in the library, try 'find_theorems'
\rightarrow How many theorems can help you if you need to prove something containing the term "Suc(Suc x)"?
\rightarrow What is the name of the theorem for associativity of addition of natural numbers in the library?

[^0]: ${ }^{a}$ https://student.unsw.edu.au/plagiarism

