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Binary Search
(java.util.Arrays)

1: public static int binarySearch(int[] a, int key) {

2: int low = 0;

3: int high = a.length - 1;

4:

5: while (low <= high) {

6: int mid = (low + high) / 2;

7: int midVal = a[mid];

8:

9: if (midVal < key)

10: low = mid + 1

11: else if (midVal > key)

12: high = mid - 1;

13: else

14: return mid; // key found

15: }

16: return -(low + 1); // key not found.

17: }
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1: public static int binarySearch(int[] a, int key) {

2: int low = 0;

3: int high = a.length - 1;

4:

5: while (low <= high) {

6: int mid = (low + high) / 2;

7: int midVal = a[mid];

8:

9: if (midVal < key)

10: low = mid + 1

11: else if (midVal > key)

12: high = mid - 1;

13: else

14: return mid; // key found

15: }

16: return -(low + 1); // key not found.

17: }

6: int mid = (low + high) / 2;

http://googleresearch.blogspot.com/2006/06/

extra-extra-read-all-about-it-nearly.html
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Organisatorials

When Mon 10:00 – 11:30
Thu 09:00 – 10:30

Where Mon: Colombo LG02 (B16-LG02)
Thu: Webster 256 (G14-256)

http://www.cse.unsw.edu.au/~cs4161/
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About us

The trustworthy systems verification team

Ü Functional correctness and security of the seL4 microkernel
Security ↔ Isabelle/HOL model ↔ Haskell model ↔ C code ↔ Binary
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About us

The trustworthy systems verification team

Ü Functional correctness and security of the seL4 microkernel
Security ↔ Isabelle/HOL model ↔ Haskell model ↔ C code ↔ Binary

Ü 10 000 LOC / 500 000 lines of proof script; about 25 person years of effort

Ü More: Cogent code/proof co-generation; CakeML verified compiler; etc.

Open Source
http://sel4.systems

https://cakeml.org

We are always embarking on exciting new projects.
We offer

Ü summer student scholarship projects

Ü honours and PhD theses

Ü research assistant and verification engineer positions
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What you will learn

Ü how to use a theorem prover
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What you will learn

Ü how to use a theorem prover

Ü background, how it works

Ü how to prove and specify

Ü how to reason about programs

Health Warning

Theorem Proving is addictive
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Prerequisites

This is an advanced course. It assumes knowledge in

Ü Functional programming

Ü First-order formal logic

The following program should make sense to you:

map f [] = []
map f (x:xs) = f x : map f xs

You should be able to read and understand this formula:

∃x . (P(x) −→ ∀x . P(x))
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Content — Using Theorem
Provers

Rough timeline

Ü Intro & motivation, getting started

[today]

Ü Foundations & Principles

• Lambda Calculus, natural deduction [1,2]
• Higher Order Logic [3a]
• Term rewriting [4]

Ü Proof & Specification Techniques

• Inductively defined sets, rule induction [5]
• Datatypes, recursion, induction [6, 7]
• Hoare logic, proofs about programs, C verification [8b,9]
• (mid-semester break)
• Writing Automated Proof Methods [10]
• Isar, codegen, typeclasses, locales [11c ,12]

aa1 due; ba2 due; ca3 due
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What you should do to have a
chance at succeeding

Ü attend lectures

Ü try Isabelle early

Ü redo all the demos alone

Ü try the exercises/homework we give, when we do give some

Ü DO NOT CHEAT
• Assignments and exams are take-home. This does NOT mean you

can work in groups. Each submission is personal.
• For more info, see Plagiarism Policya

a https://student.unsw.edu.au/plagiarism
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Credits

some material (in using-theorem-provers part) shamelessly stolen from

Tobias Nipkow, Larry Paulson, Markus Wenzel

David Basin, Burkhardt Wolff

Don’t blame them, errors are ours
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What is a proof?

to prove

Ü from Latin probare (test, approve, prove)

Ü to learn or find out by experience (archaic)

Ü to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court
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What is a proof?

to prove (Merriam-Webster)

Ü from Latin probare (test, approve, prove)

Ü to learn or find out by experience (archaic)

Ü to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court

pops up everywhere

Ü politics (weapons of mass destruction)

Ü courts (beyond reasonable doubt)

Ü religion (god exists)

Ü science (cold fusion works)
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What is a mathematical proof?

In mathematics, a proof is a demonstration that, given certain
axioms, some statement of interest is necessarily true. (Wikipedia)

Example:
√

2 is not rational.

Proof:
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What is a mathematical proof?

In mathematics, a proof is a demonstration that, given certain
axioms, some statement of interest is necessarily true. (Wikipedia)

Example:
√

2 is not rational.

Proof: assume there is r ∈ Q such that r2 = 2.
Hence there are mutually prime p and q with r = p

q .

Thus 2q2 = p2, i.e. p2 is divisible by 2.
2 is prime, hence it also divides p, i.e. p = 2s.
Substituting this into 2q2 = p2 and dividing by 2 gives q2 = 2s2. Hence,
q is also divisible by 2. Contradiction. Qed.
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Nice, but..

Ü still not rigorous enough for some
• what are the rules?
• what are the axioms?
• how big can the steps be?
• what is obvious or trivial?

Ü informal language, easy to get wrong

Ü easy to miss something, easy to cheat
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Nice, but..

Ü still not rigorous enough for some
• what are the rules?
• what are the axioms?
• how big can the steps be?
• what is obvious or trivial?

Ü informal language, easy to get wrong

Ü easy to miss something, easy to cheat

Theorem. A cat has nine tails.
Proof. No cat has eight tails. Since one cat has one more tail than no
cat, it must have nine tails.
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What is a formal proof?

A derivation in a formal calculus
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What is a formal proof?

A derivation in a formal calculus

Example: A ∧ B −→ B ∧ A derivable in the following system

Rules:
X ∈ S
S ` X

(assumption)
S ∪ {X} ` Y

S ` X −→ Y
(impI)

S ` X S ` Y
S ` X ∧ Y

(conjI)
S ∪ {X ,Y } ` Z

S ∪ {X ∧ Y } ` Z
(conjE)
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X ∈ S
S ` X

(assumption)
S ∪ {X} ` Y

S ` X −→ Y
(impI)

S ` X S ` Y
S ` X ∧ Y

(conjI)
S ∪ {X ,Y } ` Z

S ∪ {X ∧ Y } ` Z
(conjE)

Proof:
1. {A,B} ` B (by assumption)
2. {A,B} ` A (by assumption)
3. {A,B} ` B ∧ A (by conjI with 1 and 2)
4. {A ∧ B} ` B ∧ A (by conjE with 3)
5. {} ` A ∧ B −→ B ∧ A (by impI with 4)
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What is a theorem prover?

Implementation of a formal logic on a computer.

Ü fully automated (propositional logic)

Ü automated, but not necessarily terminating (first order logic)

Ü with automation, but mainly interactive (higher order logic)
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What is a theorem prover?

Implementation of a formal logic on a computer.

Ü fully automated (propositional logic)

Ü automated, but not necessarily terminating (first order logic)

Ü with automation, but mainly interactive (higher order logic)

Ü based on rules and axioms

Ü can deliver proofs

There are other (algorithmic) verification tools:

Ü model checking, static analysis, ...

Ü usually do not deliver proofs

Ü See COMP3153: Algorithmic Verification
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Why theorem proving?

Ü Analysing systems/programs thoroughly

Ü Finding design and specification errors early

Ü High assurance (mathematical, machine checked proof)

Ü it’s not always easy

Ü it’s fun

15 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License



Why theorem proving?

Ü Analysing systems/programs thoroughly

Ü Finding design and specification errors early

Ü High assurance (mathematical, machine checked proof)

Ü it’s not always easy

Ü it’s fun

15 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License



Why theorem proving?

Ü Analysing systems/programs thoroughly

Ü Finding design and specification errors early

Ü High assurance (mathematical, machine checked proof)

Ü it’s not always easy

Ü it’s fun

15 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License



Why theorem proving?

Ü Analysing systems/programs thoroughly

Ü Finding design and specification errors early

Ü High assurance (mathematical, machine checked proof)

Ü it’s not always easy

Ü it’s fun

15 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License



Main theorem proving system for
this course

λ
→

∀
=Is

ab
el
le

β

α

Isabelle

Ü used here for applications, learning how to prove
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What is Isabelle?

A generic interactive proof assistant

Ü generic:
not specialised to one particular logic
(two large developments: HOL and ZF, will mainly use HOL)

Ü interactive:
more than just yes/no, you can interactively guide the system

Ü proof assistant:
helps to explore, find, and maintain proofs
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Why Isabelle?

Ü free

Ü widely used systems

Ü active development

Ü high expressiveness and automation

Ü reasonably easy to use

Ü (and because we know it best ;-))
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If I prove it on the computer, it is correct, right?
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If I prove it on the computer, it is
correct, right?

No, because:

À hardware could be faulty

Á operating system could be faulty

Â implementation runtime system could be faulty

Ã compiler could be faulty

Ä implementation could be faulty

Å logic could be inconsistent

Æ theorem could mean something else
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If I prove it on the computer, it is
correct, right?

No, but:

probability for

Ü OS and H/W issues reduced by using different systems

Ü runtime/compiler bugs reduced by using different compilers

Ü faulty implementation reduced by having the right prover architecture

Ü inconsistent logic reduced by implementing and analysing it

Ü wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than manual proof
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If I prove it on the computer, it is
correct, right?

Soundness architectures
careful implementation PVS

LCF approach, small proof kernel HOL4
Isabelle

explicit proofs + proof checker Coq
Twelf
Isabelle
HOL4
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Meta Logic

Meta language:
The language used to talk about another language.

Examples:
English in a Spanish class, English in an English class

Meta logic:
The logic used to formalize another logic

Example:
Mathematics used to formalize derivations in formal logic
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Meta Logic – Example

Syntax:

Formulae: F ::= V | F −→ F | F ∧ F | False
V ::= [A− Z ]

Derivable: S ` X X a formula, S a set of formulae
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Meta Logic – Example

Syntax:

Formulae: F ::= V | F −→ F | F ∧ F | False
V ::= [A− Z ]

Derivable: S ` X X a formula, S a set of formulae

logic / meta logic

X ∈ S
S ` X

S ∪ {X} ` Y

S ` X −→ Y

S ` X S ` Y
S ` X ∧ Y

S ∪ {X ,Y } ` Z

S ∪ {X ∧ Y } ` Z
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Isabelle’s Meta Logic

∧
=⇒ λ
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∧
Syntax:

∧
x . F (F another meta level formula)

in ASCII: !!x. F
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∧
Syntax:

∧
x . F (F another meta level formula)

in ASCII: !!x. F

Ü universal quantifier on the meta level

Ü used to denote parameters

Ü example and more later
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=⇒

Syntax: A =⇒ B (A,B other meta level formulae)
in ASCII: A ==> B
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=⇒

Syntax: A =⇒ B (A,B other meta level formulae)
in ASCII: A ==> B

Binds to the right:

A =⇒ B =⇒ C = A =⇒ (B =⇒ C )

Abbreviation:

[[A;B]] =⇒ C = A =⇒ B =⇒ C

Ü read: A and B implies C

Ü used to write down rules, theorems, and proof states
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Example: a theorem

mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: ` x < 0 ∧ y < 0 −→ x + y < 0
variation: x < 0; y < 0 ` x + y < 0

Isabelle: lemma ”x < 0 ∧ y < 0 −→ x + y < 0”
variation: lemma ”[[x < 0; y < 0]] =⇒ x + y < 0”
variation: lemma

assumes ”x < 0” and ”y < 0” shows ”x + y < 0”

28 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License



Example: a theorem

mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: ` x < 0 ∧ y < 0 −→ x + y < 0
variation: x < 0; y < 0 ` x + y < 0

Isabelle: lemma ”x < 0 ∧ y < 0 −→ x + y < 0”
variation: lemma ”[[x < 0; y < 0]] =⇒ x + y < 0”
variation: lemma

assumes ”x < 0” and ”y < 0” shows ”x + y < 0”

28 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License



Example: a theorem

mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: ` x < 0 ∧ y < 0 −→ x + y < 0
variation: x < 0; y < 0 ` x + y < 0

Isabelle: lemma ”x < 0 ∧ y < 0 −→ x + y < 0”
variation: lemma ”[[x < 0; y < 0]] =⇒ x + y < 0”

variation: lemma
assumes ”x < 0” and ”y < 0” shows ”x + y < 0”

28 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License



Example: a theorem

mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: ` x < 0 ∧ y < 0 −→ x + y < 0
variation: x < 0; y < 0 ` x + y < 0

Isabelle: lemma ”x < 0 ∧ y < 0 −→ x + y < 0”
variation: lemma ”[[x < 0; y < 0]] =⇒ x + y < 0”
variation: lemma

assumes ”x < 0” and ”y < 0” shows ”x + y < 0”

28 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License



Example: a rule

logic:
X Y
X ∧ Y

variation:
S ` X S ` Y
S ` X ∧ Y

Isabelle: [[X ;Y ]] =⇒ X ∧ Y
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Example: a rule with nested
implication

logic:
X ∨ Y

X....
Z

Y....
Z

Z

variation:

S ∪ {X} ` Z S ∪ {Y } ` Z

S ∪ {X ∨ Y } ` Z

Isabelle: [[X ∨ Y ;X =⇒ Z ;Y =⇒ Z ]] =⇒ Z
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λ

Syntax: λx . F (F another meta level formula)
in ASCII: %x. F
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λ

Syntax: λx . F (F another meta level formula)
in ASCII: %x. F

Ü lambda abstraction

Ü used for functions in object logics

Ü used to encode bound variables in object logics

Ü more about this in the next lecture
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Enough Theory!

Getting started with Isabelle



System Architecture

Prover IDE (jEdit) – user interface

HOL, ZF – object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

User can access all layers!
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System Requirements

Ü Linux, Windows, or MacOS X (10.7 +)

Ü Standard ML
(PolyML fastest, SML/NJ supports more platforms)

Ü Java (for jEdit)

Premade packages for Linux, Mac, and Windows + info on:
http://mirror.cse.unsw.edu.au/pub/isabelle/
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Documentation

Available from http://isabelle.in.tum.de

Ü Learning Isabelle

• Tutorial on Isabelle/HOL (LNCS 2283)
• Tutorial on Isar
• Tutorial on Locales

Ü Reference Manuals

• Isabelle/Isar Reference Manual
• Isabelle Reference Manual
• Isabelle System Manual

Ü Reference Manuals for Object-Logics
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jEdit/PIDE
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jEdit/PIDE

Theory File

Isabelle Output
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jEdit/PIDE

LaTeX Comment

Commands

logic terms go in 
quotes: Òx + 2Ó
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jEdit/PIDE

Command + hover 
for popup info

Command click 
jumps to deÞnition
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jEdit/PIDE

error

processed

unprocessed
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Demo



Exercises

Ü Download and install Isabelle from
http://mirror.cse.unsw.edu.au/pub/isabelle/

Ü Step through the demo files from the lecture web page

Ü Write your own theory file, look at some theorems in the library, try
’find theorems’

Ü How many theorems can help you if you need to prove something
containing the term “Suc(Suc x)”?

Ü What is the name of the theorem for associativity of addition of natural
numbers in the library?
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