\\ \title{

## DATA<br> \title{ \section*{DATA 61} 

 61}}


## 1 <br> 



 1


COMP4161: Advanced Topics in Software Verification


Gerwin Klein, June Andronick, Ramana Kumar S2/2016

## Last time...

$\rightarrow \lambda$ calculus syntax
$\rightarrow$ free variables, substitution
$\rightarrow \beta$ reduction
$\rightarrow \alpha$ and $\eta$ conversion
$\rightarrow \beta$ reduction is confluent
$\rightarrow \lambda$ calculus is expressive (turing complete)
$\rightarrow \lambda$ calculus is inconsistent (as a logic)

## Content

$\rightarrow$ Intro \& motivation, getting started
$\rightarrow$ Foundations \& Principles

- Lambda Calculus, natural deduction
- Higher Order Logic
- Term rewriting
$\rightarrow$ Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Hoare logic, proofs about programs, C verification
- (mid-semester break)
- Writing Automated Proof Methods
- Isar, codegen, typeclasses, locales
${ }^{a}$ a1 due; ${ }^{b}$ a2 due; ${ }^{c}$ a3 due


## $\lambda$ calculus is inconsistent

Can find term $R$ such that $R R={ }_{\beta} \operatorname{not}(R R)$
There are more terms that do not make sense:
12 , true false, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)

## Introducing types

Idea: assign a type to each "sensible" $\lambda$ term.

## Examples:

$\rightarrow$ for term $t$ has type $\alpha$ write $t:: \alpha$
$\rightarrow$ if $x$ has type $\alpha$ then $\lambda x . x$ is a function from $\alpha$ to $\alpha$ Write: $(\lambda x, x):: \alpha \Rightarrow \alpha$
$\rightarrow$ for $s t$ to be sensible:
$s$ must be a function
$t$ must be right type for parameter
If $s:: \alpha \Rightarrow \beta$ and $t:: \alpha$ then ( $s t$ ) :: $\beta$


That's about it




.



## Syntax for $\lambda^{\rightarrow}$

Terms: $t::=v|c|(t t) \mid(\lambda x . t)$

$$
v, x \in V, \quad c \in C, \quad V, C \text { sets of names }
$$

Types: $\quad \tau \quad::=\mathrm{b}|\nu| \tau \Rightarrow \tau$
$\mathrm{b} \in\{$ bool, int,$\ldots\}$ base types
$\nu \in\{\alpha, \beta, \ldots\}$ type variables

$$
\alpha \Rightarrow \beta \Rightarrow \gamma \quad=\quad \alpha \Rightarrow(\beta \Rightarrow \gamma)
$$

Context 「:
$\Gamma$ : function from variable and constant names to types.

Term $t$ has type $\tau$ in context $\Gamma$ : $\quad\ulcorner\vdash t:: \tau$

## Examples

$$
\begin{aligned}
& \Gamma \vdash(\lambda x . x):: \alpha \Rightarrow \alpha \\
& {[y \leftarrow \text { int }] \vdash y:: \text { int }} \\
& {[z \leftarrow \text { bool }] \vdash(\lambda y . y) z:: \text { bool }} \\
& {[] \vdash \lambda f x . f x::(\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}
\end{aligned}
$$

A term $t$ is well typed or type correct if there are $\Gamma$ and $\tau$ such that $\Gamma \vdash t:: \tau$

## Type Checking Rules

Variables:
$\overline{\Gamma \vdash x:: \Gamma(x)}$

Application: $\frac{\Gamma \vdash t_{1}:: \tau_{2} \Rightarrow \tau \quad \Gamma \vdash t_{2}:: \tau_{2}}{\Gamma \vdash\left(t_{1} t_{2}\right):: \tau}$

Abstraction:

$$
\frac{\Gamma\left[x \leftarrow \tau_{x}\right] \vdash t:: \tau}{\Gamma \vdash(\lambda x . t):: \tau_{x} \Rightarrow \tau}
$$

## Example Type Derivation:

$$
\frac{\overline{[x \leftarrow \alpha, y \leftarrow \beta] \vdash x:: \alpha}}{\frac{[x \leftarrow \alpha] \vdash \lambda y \cdot x:: \beta \Rightarrow \alpha}{[] \vdash \lambda x y \cdot x:: \alpha \Rightarrow \beta \Rightarrow \alpha}}
$$

## More complex Example

$$
\begin{gathered}
\overline{\Gamma \vdash f:: \alpha \Rightarrow(\alpha \Rightarrow \beta)} \overline{\Gamma \vdash x:: \alpha} \\
\frac{\Gamma \vdash f x:: \alpha \Rightarrow \beta}{\Gamma \vdash x:: \alpha} \\
\frac{\Gamma \vdash f x x:: \beta}{[f \vdash \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x \cdot f \times x:: \alpha \Rightarrow \beta} \\
\\
\Gamma=[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]
\end{gathered}
$$

## More general Types

A term can have more than one type.

$$
\begin{array}{ll}
\text { Example: } & {[] \vdash \lambda x \cdot x:: \text { bool } \Rightarrow \text { bool }} \\
& {[] \vdash \lambda x . x:: \alpha \Rightarrow \alpha}
\end{array}
$$

Some types are more general than others:
$\tau \lesssim \sigma$ if there is a substitution $S$ such that $\tau=S(\sigma)$

## Examples:

$$
\text { int } \Rightarrow \text { bool } \lesssim \alpha \Rightarrow \beta \lesssim \beta \Rightarrow \alpha \quad \not \subset \quad \alpha \Rightarrow \alpha
$$

## Most general Types

Fact: each type correct term has a most general type
Formally:
$\Gamma \vdash t:: \tau \quad \Longrightarrow \quad \exists \sigma . \Gamma \vdash t:: \sigma \wedge\left(\forall \sigma^{\prime} . \Gamma \vdash t:: \sigma^{\prime} \Longrightarrow \sigma^{\prime} \lesssim \sigma\right)$
It can be found by executing the typing rules backwards.
$\rightarrow$ type checking: checking if $\Gamma \vdash t:: \tau$ for given $\Gamma$ and $\tau$
$\rightarrow$ type inference: computing $\Gamma$ and $\tau$ such that $\Gamma \vdash t:: \tau$

Type checking and type inference on $\lambda^{\rightarrow}$ are decidable.

## What about $\beta$ reduction?

Definition of $\beta$ reduction stays the same.

Fact: Well typed terms stay well typed during $\beta$ reduction

Formally:

$$
\Gamma \vdash s:: \tau \wedge s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t:: \tau
$$

This property is called subject reduction

## What about termination?

## $\beta$ reduction in $\lambda \rightarrow$ always terminates.


(Alan Turing, 1942)
$\rightarrow={ }_{\beta}$ is decidable
To decide if $s={ }_{\beta} t$, reduce $s$ and $t$ to normal form (always exists, because $\longrightarrow \beta$ terminates), and compare result.
$\rightarrow={ }_{\alpha \beta \eta}$ is decidable
This is why Isabelle can automatically reduce each term to $\beta \eta$ normal form.

## What does this mean for Expressiveness?

Not all computable functions can be expressed in $\lambda^{\rightarrow}$ !
How can typed functional languages then be turing complete?

## Fact:

Each computable function can be encoded as closed, type correct $\lambda^{\rightarrow}$ term using $Y::(\tau \Rightarrow \tau) \Rightarrow \tau$ with $Y t \longrightarrow_{\beta} t(Y t)$ as only constant.
$\rightarrow Y$ is called fix point operator
$\rightarrow$ used for recursion
$\rightarrow$ lose decidability (what does $Y(\lambda x . x)$ reduce to?)
$\rightarrow$ (Isabelle/HOL doesn't have $Y$; it supports more restricted forms of recursion)

## Types and Terms in Isabelle

Types: $\tau::=\mathrm{b}|' \nu|{ }^{\prime} \nu:: C|\tau \Rightarrow \tau|(\tau, \ldots, \tau) K$ $\mathrm{b} \in\{$ bool, int,$\ldots\}$ base types $\nu \in\{\alpha, \beta, \ldots\}$ type variables $K \in\{$ set, list, $\ldots\}$ type constructors $C \in\{$ order, linord, ...\} type classes

Terms: $\quad t::=v|c| ? v|(t t)|(\lambda x . t)$

$$
v, x \in V, \quad c \in C, \quad V, C \text { sets of names }
$$

$\rightarrow$ type constructors: construct a new type out of a parameter type. Example: int list
$\rightarrow$ type classes: restrict type variables to a class defined by axioms. Example: $\alpha$ :: order
$\rightarrow$ schematic variables: variables that can be instantiated.

## Type Classes

$\rightarrow$ similar to Haskell's type classes, but with semantic properties class order =
assumes order_refl: " $x \leq x$ "
assumes order_trans: " $\llbracket x \leq y ; y \leq z \rrbracket \Longrightarrow x \leq z "$
$\rightarrow$ theorems can be proved in the abstract
lemma order_less_trans:
" $\wedge x:: \prime a::$ order. $\llbracket x<y ; y<z \rrbracket \Longrightarrow x<z "$
$\rightarrow$ can be used for subtyping
class linorder $=$ order +
assumes linorder_linear: " $x \leq y \vee y \leq x$ "
$\rightarrow$ can be instantiated instance nat :: " \{order, linorder\}" by ...

## Schematic Variables

$$
\frac{X \quad Y}{X \wedge Y}
$$

$\rightarrow X$ and $Y$ must be instantiated to apply the rule

$$
\text { But: } \quad \text { lemma " } x+0=0+x \text { " }
$$

$\rightarrow x$ is free
$\rightarrow$ convention: lemma must be true for all $x$
$\rightarrow$ during the proof, $x$ must not be instantiated

Solution:
Isabelle has free ( x ), bound ( x ), and schematic (?X) variables. Only schematic variables can be instantiated.
Free converted into schematic after proof is finished.

## Higher Order Unification

## Unification:

Find substitution $\sigma$ on variables for terms $s, t$ such that $\sigma(s)=\sigma(t)$

In Isabelle:
Find substitution $\sigma$ on schematic variables such that
$\sigma(s)={ }_{\alpha \beta \eta} \sigma(t)$
Examples:

$$
\begin{array}{llll}
? X \wedge ? Y & ={ }_{\alpha \beta \eta} & x \wedge x & \\
? ? X \leftarrow x, ? Y \leftarrow x] \\
? P x & =\alpha_{\alpha \beta} & x \wedge x & {[? P \leftarrow \lambda x \cdot x \wedge x]} \\
P(? f x) & ={ }_{\alpha \beta \eta} & ? Y x & {[? f \leftarrow \lambda x \cdot x, ? Y \leftarrow P]}
\end{array}
$$

Higher Order: schematic variables can be functions.

## Higher Order Unification

$\rightarrow$ Unification modulo $\alpha \beta$ (Higher Order Unification) is semi-decidable
$\rightarrow$ Unification modulo $\alpha \beta \eta$ is undecidable
$\rightarrow$ Higher Order Unification has possibly infinitely many solutions

## But:

$\rightarrow$ Most cases are well-behaved
$\rightarrow$ Important fragments (like Higher Order Patterns) are decidable

## Higher Order Pattern:

$\rightarrow$ is a term in $\beta$ normal form where
$\rightarrow$ each occurrence of a schematic variable is of the form ?f $t_{1} \ldots t_{n}$
$\rightarrow$ and the $t_{1} \ldots t_{n}$ are $\eta$-convertible into $n$ distinct bound variables

## We have learned so far...

$\rightarrow$ Simply typed lambda calculus: $\lambda \rightarrow$
$\rightarrow$ Typing rules for $\lambda \rightarrow$, type variables, type contexts
$\rightarrow \beta$-reduction in $\lambda \rightarrow$ satisfies subject reduction
$\rightarrow \beta$-reduction in $\lambda \rightarrow$ always terminates
$\rightarrow$ Types and terms in Isabelle

