

Content

\rightarrow Intro \& motivation, getting started
\rightarrow Foundations \& Principles

- Lambda Calculus, natural deduction
- Higher Order Logic
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Hoare logic, proofs about programs, C verification
- (mid-semester break)
- Writing Automated Proof Methods
- Isar, codegen, typeclasses, locales
${ }^{a}$ a1 due; ${ }^{b}$ a2 due; ${ }^{c}$ a3 due

Last Time on HOL

\rightarrow Defining HOL
\rightarrow Higher Order Abstract Syntax
\rightarrow Deriving proof rules
\rightarrow More automation

Term Rewriting

The Problem

Given a set of equations

$$
\begin{gathered}
I_{1}=r_{1} \\
I_{2}=r_{2} \\
\vdots \\
I_{n}=r_{n}
\end{gathered}
$$

does equation $l=r$ hold?
Applications in:
\rightarrow Mathematics (algebra, group theory, etc)
\rightarrow Functional Programming (model of execution)
\rightarrow Theorem Proving (dealing with equations, simplifying statements)

Term Rewriting: The Idea

use equations as reduction rules

$$
\begin{gathered}
I_{1} \longrightarrow r_{1} \\
I_{2} \longrightarrow r_{2} \\
\vdots \\
I_{n} \longrightarrow r_{n}
\end{gathered}
$$

decide $I=r$ by deciding $I \stackrel{*}{\longleftrightarrow} r$

Arrow Cheat Sheet

$$
\begin{aligned}
& \xrightarrow{0}=\{(x, y) \mid x=y\} \quad \text { identity } \\
& \xrightarrow{n+1} \circ \xrightarrow{n} \circ \longrightarrow \quad \mathrm{n}+1 \text { fold composition } \\
& \xrightarrow{+}=\bigcup_{i>0} \xrightarrow{i} \quad \text { transitive closure } \\
& \xrightarrow{*} \quad=\xrightarrow{+} \cup \xrightarrow{0} \quad \text { reflexive transitive closure } \\
& \xrightarrow{=}=\longrightarrow \cup \xrightarrow{0} \quad \text { reflexive closure } \\
& \xrightarrow{-1}=\{(y, x) \mid x \longrightarrow y\} \quad \text { inverse } \\
& \longleftarrow=\xrightarrow{-1} \quad \text { inverse } \\
& \longleftrightarrow=\longleftarrow \cup \longrightarrow \\
& \stackrel{+}{\longleftrightarrow}=U_{i>0} \stackrel{i}{\longleftrightarrow} \\
& \stackrel{*}{\longleftrightarrow}=\stackrel{+}{\longleftrightarrow} \cup \stackrel{0}{\longleftrightarrow} \\
& \text { inverse } \\
& \text { symmetric closure } \\
& \text { transitive symmetric closure } \\
& \text { reflexive transitive symmetric closure }
\end{aligned}
$$

How to Decide $/ \stackrel{*}{\longleftrightarrow} r$

Same idea as for β : look for n such that $I \xrightarrow{*} n$ and $r \xrightarrow{*} n$
Does this always work?
If $I \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $I \stackrel{*}{\longleftrightarrow} r$. Ok.
If $I \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n ? No!

Example:

Rules: $\quad f x \longrightarrow a, \quad g x \longrightarrow b, \quad f(g x) \longrightarrow b$
$f x \stackrel{*}{\longleftrightarrow} g x \quad$ because $\quad f x \longrightarrow a \longleftarrow f(g x) \longrightarrow b \longleftarrow g x$
But: $\quad f x \longrightarrow a$ and $g x \longrightarrow b$ and a, b in normal form
Works only for systems with Church-Rosser property:

$$
I \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n . I \xrightarrow{*} n \wedge r \xrightarrow{*} n
$$

Fact: \longrightarrow is Church-Rosser iff it is confluent.

Confluence

Problem:

is a given set of reduction rules confluent?
undecidable

Local Confluence

Fact: local confluence and termination \Longrightarrow confluence

Termination

\longrightarrow is terminating if there are no infinite reduction chains
\longrightarrow is normalizing if each element has a normal form
\longrightarrow is convergent if it is terminating and confluent

Example:

\longrightarrow_{β} in λ is not terminating, but confluent
\longrightarrow_{β} in $\lambda \rightarrow$ is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

When is \longrightarrow Terminating?

Basic idea: when each rule application makes terms simpler in some way.
More formally: \longrightarrow is terminating when there is a well founded order $<$ on terms for which $s<t$ whenever $t \longrightarrow s$
(well founded $=$ no infinite decreasing chains $a_{1}>a_{2}>\ldots$)
Example: $f(g x) \longrightarrow g x, g(f x) \longrightarrow f x$
This system always terminates. Reduction order:
$s<_{r} t$ iff $\operatorname{size}(s)<\operatorname{size}(t)$ with
$\operatorname{size}(s)=$ number of function symbols in s
(1) Both rules always decrease size by 1 when applied to any term t
(2) $<_{r}$ is well founded, because $<$ is well founded on \mathbb{N}

Termination in Practice

In practice: often easier to consider just the rewrite rules by themselves,
rather than their application to an arbitrary term t.
Show for each rule $I_{i}=r_{i}$, that $r_{i}<I_{i}$.

Example:

$$
g x<f(g x) \text { and } f x<g(f x)
$$

Requires

u to become smaller whenever any subterm of u is made smaller. Formally:

Requires < to be monotonic with respect to the structure of terms:

$$
s<t \longrightarrow u[s]<u[t] .
$$

True for most orders that don't treat certain parts of terms as special cases.

Example Termination Proof

Problem: Rewrite formulae containing \neg, \wedge, \vee and \longrightarrow, so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

\rightarrow Remove implications:

$$
\text { imp: } \quad(A \longrightarrow B)=(\neg A \vee B)
$$

\rightarrow Push \neg s down past other operators:
notnot: $\quad(\neg \neg P)=P$
notand: $\quad(\neg(A \wedge B))=(\neg A \vee \neg B)$
notor: $\quad(\neg(A \vee B))=(\neg A \wedge \neg B)$
We show that the rewrite system defined by these rules is terminating.

Order on Terms

Each time one of our rules is applied, either:
\rightarrow an implication is removed, or
\rightarrow something that is not a \neg is hoisted upwards in the term.
This suggests a 2-part order, $<_{r}: s<_{r} t$ iff:
\rightarrow num_imps $s<$ num_imps t, or
\rightarrow num_imps $s=$ num_imps $t \wedge$ osize $s<$ osize t.
Let:
$\rightarrow s<_{i} t \equiv$ num_imps $s<$ num_imps t and
$\rightarrow s<_{n} t \equiv$ osize $s<$ osize t
Then $<_{i}$ and $<_{n}$ are both well-founded orders (since both return nats).
$<_{r}$ is the lexicographic order over $<_{i}$ and $<_{n} .<_{r}$ is well-founded since $<_{i}$ and $<_{n}$ are both well-founded.

Order Decreasing

imp clearly decreases num_imps.
osize adds up all non-ᄀ operators and variables/constants, weights each one according to its depth within the term.

$$
\begin{array}{ll}
\text { osize }^{o^{\prime}} & x=2^{x} \\
\text { osize }^{\prime}(\neg P) & x=\text { osize }^{\prime} P(x+1) \\
\text { osize }^{\prime}(P \wedge Q) & x=2^{x}+\left(\text { osize }^{\prime} P(x+1)\right)+\left(\text { osize }^{\prime} Q(x+1)\right) \\
\text { osize }^{\prime}(P \vee Q) & x=2^{x}+\left(\text { osize }^{\prime} P(x+1)\right)+\left(\text { osize }^{\prime} Q(x+1)\right) \\
\text { osize }^{\prime}(P \longrightarrow Q) & x=2^{x}+\left(\text { osize }^{\prime} P(x+1)\right)+\left(\text { osize }^{\prime} Q(x+1)\right) \\
\text { osize } P & \\
& =\operatorname{osize}^{\prime} P 0
\end{array}
$$

The other rules decrease the depth of the things osize counts, so decrease osize.

Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier
apply simp
\rightarrow uses simplification rules
\rightarrow (almost) blindly from left to right
\rightarrow until no rule is applicable.
termination: not guaranteed (may loop)
confluence: not guaranteed
(result may depend on which rule is used first)

Control

\rightarrow Equations turned into simplification rules with [simp] attribute
\rightarrow Adding/deleting equations locally: apply (simp add: <rules>) and apply (simp del: <rules>)
\rightarrow Using only the specified set of equations: apply (simp only: <rules>)

Demo

$$
1
$$

1
IATA

III 1.
cairo
I

相

!

(

I

We have seen today...

\rightarrow Equations and Term Rewriting
\rightarrow Confluence and Termination of reduction systems
\rightarrow Term Rewriting in Isabelle

Exercises

\rightarrow Show, via a pen-and-paper proof, that the osize function is monotonic with respect to the structure of terms from that example.

