| | | |
N NS SN\

NS /\/ﬁ/w/w W
\/ ~ /\I/ I/\I \I/\

N N~ 7

COMP4161: Advanced Topics in Software Verification I I I
Ve 7~
; NN\
Gerwin Klein, June Andronick, Ramana Kumar 7N

52/2016
databl.csiro.au %

Content DATA
) %

=» Intro & motivation, getting started

=» Foundations & Principles

e Lambda Calculus, natural deduction [1,2]
o Higher Order Logic [37]
e Term rewriting [4]

=» Proof & Specification Techniques

e Inductively defined sets, rule induction [5]
e Datatypes, recursion, induction [6, 7]
e Hoare logic, proofs about programs, C verification [8°,9]
o (mid-semester break)

e Writing Automated Proof Methods [10]
o lsar, codegen, typeclasses, locales [11°,12]

23l due; Pa2 due; a3 due

2 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Last Time DATA
@

=» Equations and Term Rewriting
=» Confluence and Termination of reduction systems
=» Term Rewriting in Isabelle

3 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Applying a Rewrite Rule AT
19

=» /| — r applicable to term t[s]

if there is substitution ¢ such that 0 / =5
=» Result: t[o r]
=» Equationally: t[s] = t[o r]

Example:
Rule: 04+n—n

Term: a+ (0+ (b+¢))
Substitution: ¢ = {n+— b+ c}
Result: a+ (b+ ¢)

4 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Conditional Term Rewriting DATA | %

Rewrite rules can be conditional:
[Pi...Pl]l=1I=r

is applicable to term t[s] with o if
=* o /=sand
=*» o Py, ..., 0 P, are provable by rewriting.

5 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Rewriting with Assumptions DATA | @

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma’"f x=gxANgx=fx=fx=2"
simp use and simplify assumptions
(simp (no_asm)) ignore assumptions

(simp (no_asm_use)) simplify, but do not use assumptions
(simp (no_asm_simp)) use, but do not simplify assumptions

6 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Preprocessing D oA
@

Preprocessing (recursive) for maximal simplification power:

-A — A= False
A—B — A—B
AANB — A B
Vx. Ax — A7?x
A — A= True
Example: (p—gA-r)As
—

p = q = True p = r = False s = True

7 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

Case splitting with simp DATA | %

P (if A then s else t)

(A— P s)A(=A—s P t)
Automatic

P (case e of 0 = a|Sucn = b)

(e=0—>Pa)/\(Vr:e=Sucn—>Pb)
Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

9 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Congruence Rules DATA | D

congruence rules are about using context

Example: in P — @ we could use P to simplify terms in @

For = hardwired (assumptions used in rewriting)
For other operators expressed with conditional rewriting.

Example:
[P=P,P=Q=Q]=(P—Q)=(P — Q)
Read: to simplify P — Q

=> first simplify P to P’

=» then simplify Q to Q' using P’ as assumption

> the resultis P — Q'

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

More Congruence AT
a6
~N~-

Sometimes useful, but not used automatically (slowdown):
conj_cong: [P = PP — Q= Q= (PAQ) = (P' A Q)

Context for if-then-else:
ifcong. [b=cc=x=uc=y=v]=
(if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):
if_weak_cong:
b = c = (if b then x else y) = (if ¢ then x else y)

=» declare own congruence rules with [cong] attribute
=» delete with [cong del]
=» use locally with e.g. apply (simp cong: <rule>)

11 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

s = /
Ordered rewriting | @
N~
Problem: x +y — y 4 x does not terminate

Solution: use permutative rules only if term becomes
lexicographically smaller.

Example: b+a~a+bbutnota+ b~ b+ a.
For types nat, int etc:

o lemmas add_ac sort any sum (+)

e lemmas mult_ac sort any product (x)

Example: apply (simp add: add_ac) vyields
(b+c)+a~--~a+(b+c)

12 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

AC Rules DATA | @

Example for associative-commutative rules:
Associative: x0y)oz=x0(y©2)
Commutative: xOQy=yOx

These 2 rules alone get stuck too early (not confluent).

Example: (zOx)O(y©v)
Wewant: (zOx)0(yoOv)=ve (xo(yoz))
We get: (zOX)O(yov)=ve(yo(xoz)

Weneed: ACrule xO(y©z)=yo(x02)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly

13 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

Back to Confluence DATA | %

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let 1 — nn and b — r» be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of /; unifies with k.

Example:
Rules: (1) fx—a (2)gy—b (3)f(gz)—b
Critical pairs:

()+B3) {x— g 2} a2 rig Db
3)+(2) {z—y) b fgy) Sro

15 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Completion D arn
@

)fx—a (2gy—b (3)f(gz)—b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

W+GB) {x—gzt 2L f(gz

shows that a = b (because a <— b), so we add a — b as a rule

) By

This is the main idea of the Knuth-Bendix completion algorithm.

16 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

Orthogonal Rewriting Systems DATA | @

Definitions:
A rule | — r is left-linear if no variable occurs twice in /.

A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.
Orthogonal rewrite systems are confluent

Application: functional programming languages

18 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

We have learned today ... DATA | %

=» Conditional term rewriting
=>» Congruence rules
=> AC rules

=» More on confluence

19 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

