

COMP4161: Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Ramana Kumar S2/2016

Content

DATA CSIRO	
[1]	

→	Intro	&	motivation,	getting	started
---	-------	---	-------------	---------	---------

→ Foundations & Principles

 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3ª]
 Term rewriting 	[4]

→ Proof & Specification Techniques

Inductively defined sets, rule induction

	[-]
 Datatypes, recursion, induction 	[6, 7]
 Hoare logic, proofs about programs, C verification 	$[8^b, 9]$

(mid-semester break)

 Writing Automated Proof Methods 	[10]
	[110.10]

Isar, codegen, typeclasses, locales [11c,12]

^aa1 due: ^ba2 due: ^ca3 due

→ Equations and Term Rewriting

→ Equations and Term Rewriting

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

 \rightarrow $l \longrightarrow r$ applicable to term t[s]

→ $l \longrightarrow r$ applicable to term t[s] if there is substitution σ such that $\sigma l = s$

- → $l \longrightarrow r$ applicable to term t[s] if there is substitution σ such that $\sigma l = s$
- **→** Result: $t[\sigma \ r]$

→ $l \longrightarrow r$ applicable to term t[s] if there is substitution σ such that $\sigma l = s$

→ Result: $t[\sigma \ r]$

→ Equationally: $t[s] = t[\sigma \ r]$

Example:

→ $l \longrightarrow r$ applicable to term t[s] if there is substitution σ such that $\sigma l = s$

→ Result: $t[\sigma \ r]$

→ Equationally: $t[s] = t[\sigma \ r]$

Example:

Rule: $0 + n \longrightarrow n$

Term: a + (0 + (b + c))

→ $l \longrightarrow r$ applicable to term t[s] if there is substitution σ such that $\sigma l = s$

→ Result: $t[\sigma \ r]$

→ Equationally: $t[s] = t[\sigma \ r]$

Example:

Rule: $0 + n \longrightarrow n$

Term: a + (0 + (b + c))

Substitution: $\sigma = \{n \mapsto b + c\}$

→ $l \longrightarrow r$ applicable to term t[s] if there is substitution σ such that $\sigma l = s$

→ Result: $t[\sigma \ r]$

→ Equationally: $t[s] = t[\sigma \ r]$

Example:

Rule: $0 + n \longrightarrow n$

Term: a + (0 + (b + c))

Substitution: $\sigma = \{n \mapsto b + c\}$

Result: a + (b + c)

Conditional Term Rewriting

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow I = r$$

Conditional Term Rewriting

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow I = r$$

is **applicable** to term t[s] with σ if

- $\rightarrow \sigma I = s$ and
- \rightarrow σ P_1, \ldots, σ P_n are provable by rewriting.

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma "
$$f x = g x \land g x = f x \Longrightarrow f x = 2$$
"

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma "
$$f x = g x \land g x = f x \Longrightarrow f x = 2$$
"

simp (simp (no_asm)) use and simplify assumptions ignore assumptions (simp (no_asm_use)) simplify, but do not use assumptions (simp (no_asm_simp)) use, but do not simplify assumptions

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$\begin{array}{cccc} \neg A & \mapsto & A = \textit{False} \\ A \longrightarrow B & \mapsto & A \Longrightarrow B \\ A \land B & \mapsto & A, B \\ \forall x. \ A \ x & \mapsto & A \ ?x \\ A & \mapsto & A = \textit{True} \end{array}$$

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$\begin{array}{cccc} \neg A & \mapsto & A = \textit{False} \\ A \longrightarrow B & \mapsto & A \Longrightarrow B \\ A \land B & \mapsto & A, B \\ \forall x. \ A \ x & \mapsto & A \ ?x \\ A & \mapsto & A = \textit{True} \end{array}$$

$$(p \longrightarrow q \land \neg r) \land s$$

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$\begin{array}{cccc} \neg A & \mapsto & A = \textit{False} \\ A \longrightarrow B & \mapsto & A \Longrightarrow B \\ A \land B & \mapsto & A, B \\ \forall x. \ A \ x & \mapsto & A \ ?x \\ A & \mapsto & A = \textit{True} \end{array}$$

 $(p \longrightarrow q \land \neg r) \land s$

$$p \Longrightarrow q = \mathit{True} \qquad p \Longrightarrow r = \mathit{False} \qquad s = \mathit{True}$$

$$P \text{ (if } A \text{ then } s \text{ else } t)$$

$$= (A \longrightarrow P s) \land (\neg A \longrightarrow P t)$$
Automatic

$$\begin{array}{c} P \text{ (case } e \text{ of } 0 \ \Rightarrow \ a \mid \mathsf{Suc} \ n \ \Rightarrow \ b) \\ = \\ (e = 0 \longrightarrow P \ a) \land (\forall n. \ e = \mathsf{Suc} \ n \longrightarrow P \ b) \end{array}$$

$$P \text{ (if } A \text{ then } s \text{ else } t)$$

$$= (A \longrightarrow P s) \land (\neg A \longrightarrow P t)$$
Automatic

$$P ext{ (case } e ext{ of } 0 \Rightarrow a \mid \mathsf{Suc} \ n \Rightarrow b)$$

$$= (e = 0 \longrightarrow P \ a) \land (\forall n. \ e = \mathsf{Suc} \ n \longrightarrow P \ b)$$
Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \Longrightarrow hardwired (assumptions used in rewriting)

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \Longrightarrow hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

$$\textbf{Example} \colon \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$$

Read: to simplify $P \longrightarrow Q$

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For ⇒ hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

$$\textbf{Example} \colon \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$$

Read: to simplify $P \longrightarrow Q$

→ first simplify P to P'

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For ⇒ hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

$$\textbf{Example} \colon \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$$

Read: to simplify $P \longrightarrow Q$

- \rightarrow first simplify P to P'
- \rightarrow then simplify Q to Q' using P' as assumption

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \Longrightarrow hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

$$\textbf{Example} \colon \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$$

Read: to simplify $P \longrightarrow Q$

- \rightarrow first simplify P to P'
- \rightarrow then simplify Q to Q' using P' as assumption
- ightharpoonup the result is $P' \longrightarrow Q'$

More Congruence

Sometimes useful, but not used automatically (slowdown): **conj_cong**: $\llbracket P=P';P'\Longrightarrow Q=Q'\rrbracket\Longrightarrow (P\wedge Q)=(P'\wedge Q')$

More Congruence

Sometimes useful, but not used automatically (slowdown):

$$\mathbf{conj_cong:} \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$$

Context for if-then-else:

if_cong:
$$\llbracket b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v \rrbracket \Longrightarrow$$
 (if b then x else y) = (if c then u else v)

More Congruence

Sometimes useful, but not used automatically (slowdown):

$$\textbf{conj_cong:} \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$$

Context for if-then-else:

if_cong:
$$[b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v] \Longrightarrow$$
 (if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):

if_weak_cong:
$$b = c \Longrightarrow (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y)$$

More Congruence

Sometimes useful, but not used automatically (slowdown):

$$\textbf{conj_cong:} \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$$

Context for if-then-else:

if_cong:
$$[b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v] \Longrightarrow$$
 (if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):

if_weak_cong:
$$b = c \Longrightarrow (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y)$$

→ declare own congruence rules with [cong] attribute

More Congruence

Sometimes useful, but not used automatically (slowdown):

$$\textbf{conj_cong:} \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$$

Context for if-then-else:

if_cong:
$$\llbracket b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v \rrbracket \Longrightarrow$$
 (if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):

if_weak_cong:
$$b = c \Longrightarrow$$
 (if b then x else y) = (if c then x else y)

- → declare own congruence rules with [cong] attribute
- → delete with [cong del]

More Congruence

Sometimes useful, but not used automatically (slowdown):

$$\textbf{conj_cong:} \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$$

Context for if-then-else:

if_cong:
$$\llbracket b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v \rrbracket \Longrightarrow$$
 (if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):

if_weak_cong:
$$b = c \Longrightarrow (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y)$$

- → declare own congruence rules with [cong] attribute
- → delete with [cong del]
- → use locally with e.g. apply (simp cong: <rule>)

Problem: $x + y \longrightarrow y + x$ does not terminate

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example:

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

For types nat, int etc:

- lemmas add_ac sort any sum (+)
- lemmas mult_ac sort any product (*)

Example: apply (simp add: add_ac) yields $(b+c) + a \leadsto \cdots \leadsto a + (b+c)$

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$

We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$

We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$

We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$

We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$

We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$

We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$ We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operator Isabelle will order terms correctly

Last time: confluence in general is undecidable.

Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!

Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!

Problem: overlapping lhs of rules.

Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!

Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!

Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables. They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f \times \longrightarrow a$ (2) $g \times y \longrightarrow b$ (3) $f \times (g \times z) \longrightarrow b$ Critical pairs:

15 | COMPA161 | © Data61 CSIRO: provided under Creative Commons Attribution License

Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!

Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables. They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f \times \longrightarrow a$ (2) $g \times y \longrightarrow b$ (3) $f (g \times z) \longrightarrow b$ Critical pairs:

$$(1)+(3) \qquad \{x \mapsto g \ z\} \qquad a \stackrel{(1)}{\longleftarrow} f \ (g \ z) \stackrel{(3)}{\longrightarrow} b$$

$$(3)+(2) \qquad \{z \mapsto y\} \qquad b \stackrel{(3)}{\longleftarrow} f \ (g \ y) \stackrel{(2)}{\longrightarrow} f \ b$$

(1)
$$f \times \longrightarrow a$$
 (2) $g \times y \longrightarrow b$ (3) $f \times (g \times z) \longrightarrow b$ is not confluent

16 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

(1)
$$f \times \longrightarrow a$$
 (2) $g \times y \longrightarrow b$ (3) $f (g \times z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules!

16 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

(1)
$$f \times \longrightarrow a$$
 (2) $g \times y \longrightarrow b$ (3) $f (g \times z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

,

(1)
$$f \times \longrightarrow a$$
 (2) $g \times y \longrightarrow b$ (3) $f \times (g \times z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

$$(1)+(3) \qquad \{x\mapsto g\ z\} \qquad a\stackrel{(1)}{\longleftarrow} \quad f\ (g\ z) \quad \xrightarrow{(3)} b$$
 shows that $a=b$ (because $a\stackrel{*}{\longleftrightarrow} b$),

(1)
$$f \times \longrightarrow a$$
 (2) $g \times y \longrightarrow b$ (3) $f (g \times z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

$$(1)+(3) \qquad \{x\mapsto g\ z\} \qquad a\xleftarrow{(1)} \quad f\ (g\ z) \xrightarrow{(3)} b$$
 shows that $a=b$ (because $a\xleftarrow{*}b$), so we add $a\longrightarrow b$ as a rule

(1)
$$f \times \longrightarrow a$$
 (2) $g \times y \longrightarrow b$ (3) $f (g \times z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

$$(1)+(3) \qquad \{x\mapsto g\ z\} \qquad a\xleftarrow{(1)} \quad f\ (g\ z) \xrightarrow{(3)} b$$
 shows that $a=b$ (because $a\xleftarrow{*}b$), so we add $a\longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

Definitions:

Definitions:

A rule $l \longrightarrow r$ is left-linear if no variable occurs twice in l.

Definitions:

A **rule** $I \longrightarrow r$ is **left-linear** if no variable occurs twice in I.

A rewrite system is left-linear if all rules are.

Definitions:

A rule $l \longrightarrow r$ is left-linear if no variable occurs twice in l.

A rewrite system is left-linear if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Definitions:

A rule $I \longrightarrow r$ is left-linear if no variable occurs twice in I.

A rewrite system is left-linear if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Definitions:

A rule $l \longrightarrow r$ is **left-linear** if no variable occurs twice in l.

A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

→ Conditional term rewriting

- → Conditional term rewriting
- → Congruence rules

- → Conditional term rewriting
- → Congruence rules
- → AC rules

- → Conditional term rewriting
- → Congruence rules
- → AC rules
- → More on confluence