COMP4161: Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Ramana Kumar S2/2016

data61.csiro.au

DATA

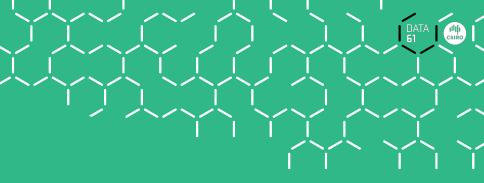
Content

	[1]
→ Intro & motivation, getting started	[_]
 → Foundations & Principles Lambda Calculus, natural deduction Higher Order Logic Term rewriting 	[1,2] [3 ^ª] [4]
 → Proof & Specification Techniques Inductively defined sets, rule induction Datatypes, recursion, induction Hoare logic, proofs about programs, C verification (mid-semester break) Writing Automated Proof Methods Isar, codegen, typeclasses, locales 	[5] [6, 7] [8 ^b ,9] [10] [11 ^c ,12]

^aa1 due; ^ba2 due; ^ca3 due

Last Time

- → Sets
- ➔ Type Definitions
- ➔ Inductive Definitions



Inductive Definitions

How They Work

The Nat Example

$$\frac{n \in N}{n+1 \in N}$$

- \rightarrow *N* is the set of natural numbers \mathbb{N}
- → But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- \twoheadrightarrow \mathbbm{N} is the smallest set that is consistent with the rules.

Why the smallest set?

- → Objective: **no junk**. Only what must be in X shall be in X.
- → Gives rise to a nice proof principle (rule induction)

Formally

Rules
$$\frac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X}$$
 with $a_1, \dots, a_n, a \in A$
define set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X possibly infinite)

Applying rules *R* to a set *B*: $\hat{R} B \equiv \{x. \exists H. (H, x) \in R \land H \subseteq B\}$

Example:

$$\begin{array}{lll} R & \equiv & \{(\{\},0)\} \cup \{(\{n\},n+1). \ n \in {\rm I\!R}\} \\ \hat{R} \ \{3,6,10\} & = & \{0,4,7,11\} \end{array}$$

The Set

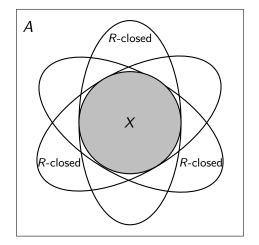
Definition: *B* is *R*-closed iff $\hat{R} \ B \subseteq B$

Definition: X is the least R-closed subset of A

This does always exist:

Fact: $X = \bigcap \{ B \subseteq A. \ B \ R-closed \}$

Generation from Above



Rule Induction

$$\frac{n \in N}{n+1 \in N}$$

induces induction principle

$$\llbracket P \ 0; \ \bigwedge n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in X. \ P \ x$$

In general:

$$\frac{\forall (\{a_1,\ldots a_n\},a) \in R. \ P \ a_1 \land \ldots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

Why does this work?

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \wedge \dots \wedge P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$
$$\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \wedge \dots \wedge P \ a_n \Longrightarrow P \ a$$

says
$$\{x. P x\}$$
 is *R*-closed

but:X is the least R-closed sethence: $X \subseteq \{x. P x\}$ which means: $\forall x \in X. P x$

qed

Rules with side conditions

$$\frac{a_1 \in X \quad \dots \quad a_n \in X \quad C_1 \quad \dots \quad C_m}{a \in X}$$

induction scheme:

$$(\forall (\{a_1, \dots a_n\}, a) \in R. P \ a_1 \land \dots \land P \ a_n \land \\ \begin{array}{c} C_1 \land \dots \land C_m \land \\ \{a_1, \dots, a_n\} \subseteq X \Longrightarrow P \ a) \\ \end{array} \\ \end{array}$$

X as Fixpoint

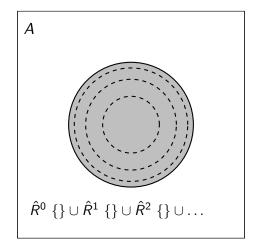
How to compute X? $X = \bigcap \{B \subseteq A. \ B \ R - closed\}$ hard to work with.

Instead: view X as least fixpoint, X least set with $\hat{R} X = X$.

Fixpoints can be approximated by iteration:

 $X_{0} = \hat{R}^{0} \{\} = \{\}$ $X_{1} = \hat{R}^{1} \{\} = \text{rules without hypotheses}$ \vdots $X_{n} = \hat{R}^{n} \{\}$ $X_{u} = \bigcup_{n \in \mathbb{N}^{t}} (R^{n} \{\}) = X$

Generation from Below



Does this always work?

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function.

Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:

- → least and greatest fixpoints exist (complete lattice always non-empty).
- \rightarrow can be reached by (possibly infinite) iteration. (Why?)

Exercise

Formalize the this lecture in Isabelle:

- → Define closed $f A :: (\alpha \text{ set} \Rightarrow \alpha \text{ set}) \Rightarrow \alpha \text{ set} \Rightarrow \text{bool}$
- → Show closed $f A \land$ closed $f B \implies$ closed $f (A \cap B)$ if f is monotone (mono is predefined)
- → Define **lfpt** *f* as the intersection of all *f*-closed sets
- → Show that lfpt f is a fixpoint of f if f is monotone
- \rightarrow Show that lfpt f is the least fixpoint of f
- → Declare a constant $R :: (\alpha \text{ set } \times \alpha)$ set
- → Define $\hat{R} :: \alpha$ set $\Rightarrow \alpha$ set in terms of R
- → Show soundness of rule induction using R and lfpt \hat{R}

We have learned today ...

- → Formal background of inductive definitions
- \rightarrow Definition by intersection
- ➔ Computation by iteration
- → Formalisation in Isabelle