
COMP4161 S2/2017
Advanced Topics in Software Verification

Assignment 2

This assignment starts on Monday, 2017-09-4 and is due on Monday, 2017-
09-18, 23:59h. We will accept Isabelle .thy files only. In addition to this pdf
document, please refer to the provided Isabelle template for the definitions
and lemma statements.

The assignment is take-home. This does NOT mean you can work in groups.
Each submission is personal. For more information, see the plagiarism pol-
icy: https://student.unsw.edu.au/plagiarism

Submit using give on a CSE machine: give cs4161 a2 a2.thy

For all questions, you may prove your own helper lemmas, and you may
use lemmas proved earlier in other questions. If you can’t finish an earlier
proof, use sorry to assume that the result holds so that you can use it if you
wish in a later proof. You won’t be penalised in the later proof for using an
earlier true result you are yet to prove, and you’ll be awarded part marks
for the earlier question in accordance with the progress you made on it.

1 Higher-Order Logic (16 marks)

Prove each of the following statements, using only the proof methods: rule,
erule, assumption, frule, drule, rule tac, erule tac, frule tac, drule tac,
rename tac, and cases tac; and using only the proof rules: impI, impE,
conjI, conjE, disjI1, disjI2, disjE, notI, notE, iffI, iffE, iffD1, iffD2,
ccontr, classical, FalseE, TrueI, conjunct1, conjunct2, allI, allE,
exI, exE, spec, and mp. You do not need to use all of these methods and
rules. You may use rules proved in earlier parts of the question when proving
later parts.

(a) (¬ (∀ x . P x )) = (∃ x . ¬ P x ) (3 marks)

(b) (∀ x . P −→ Q x ) = (P −→ (∀ x . Q x )) (3 marks)

(c) (∀ x . P x ∧ Q x ) = ((∀ x . P x ) ∧ (∀ x . Q x )) (3 marks)

(d) ∀ x . ¬ R x −→ R (M x ) =⇒ ∀ x . R x ∨ R (M x ) (3 marks)

1

https://student.unsw.edu.au/plagiarism


(e) [[∀ x . ¬ R x −→ R (M x ); ∃ x . R x ]] =⇒ ∃ x . R x ∧ R (M (M x ))
(4 marks)

2 List Datatype (14 marks)

Consider a datatype ′a list2 that is similar to the usual list datatype, ′a list,
except it allows you to add an element not only to the front, but also to the
end of a list.

(a) Define the datatype ′a list2. (2 marks)

(b) Write a function list-of-list2 that converts an ′a list2 back into an ′a
list. (2 marks)

(c) Define a function swap-cons that swaps the two non-nil constructors
(the ones that add an element to the front and to the back) in an ′a
list2. (2 marks)

(d) Write a lemma stating that swap-cons reverses the list represented by
an ′a list2, and prove it. (3 marks)

(e) Define a function app2 that appends two ′a list2 s. (2 marks)

(f) Prove the correctness of app2. (3 marks)

3 Normal Forms for Propositional Formulae (29 marks)

Consider the following datatype fml of formulae of propositional logic:

datatype fml =
Var pvar
| Neg fml
| Conj fml fml
| Disj fml fml

where pvar denotes variables ranging over values of type bool. The function
eval-fml computes the value of a formula for a given state (i.e., a valuation
of variables).

fun eval-fml :: fml ⇒ valuation ⇒ bool where
eval-fml (Var v) s = s v
| eval-fml (Neg p) s = (¬(eval-fml p s))
| eval-fml (Conj p q) s = (eval-fml p s ∧ eval-fml q s)
| eval-fml (Disj p q) s = (eval-fml p s ∨ eval-fml q s)

2



A formula is in negation normal form (NNF) when negation is only applied
to variables. We now want to define a function nnf that converts a formula
into NNF.

function nnf :: fml ⇒ fml where
nnf (Var x ) = Var x |
nnf (Neg (Neg p)) = nnf (p) |
nnf (Neg (Var x )) = Neg (Var x ) |
nnf (Neg (Conj p q)) = nnf (Disj (Neg p) (Neg q)) |
nnf (Neg (Disj p q)) = nnf (Conj (Neg p) (Neg q)) |
nnf (Conj p q) = Conj (nnf p) (nnf q) |
nnf (Disj p q) = Disj (nnf p) (nnf q)

Here we need to use Isabelle’s function command and manually prove that
the computation of nnf does terminate. To prove termination, we need to
define a measure on fml that decreases during the computation of nnf.

termination nnf
apply (relation inv-image (less-than) (λt . (neg-depth t)))

(a) Define a predicate is-nnf that tests if a formula is in NNF. (2 marks)

(b) Complete the definition of the function nnf by proving its termination.
(6 marks)

(c) Prove that nnf is correct, i.e., it returns a formula in NNF and it
preserves the value of a formula. (6 marks)

A formula is in conjunctive normal form (CNF) if it is in NNF and is a series
of conjunctions of subformlae that have no conjunctions within them.

(d) Define a function is-cnf that tests if a formula is in CNF. (3 marks)

(e) Define a function nnf-to-cnf that converts a formula in NNF into CNF.
(4 marks)

(f) Prove that nnf-to-cnf correctly transforms a formula in NNF into CNF
and that it preserves its value. (8 marks)

4 Sublists (16 marks)

A sublist of a list ls is a list containing only the elements of ls in the same
order as in ls. For example, for a list ls=[1 ,2 ,3 ], the sublists of ls are the
following lists: [], [1 ], [2 ], [3 ], [1 ,2 ], [1 ,3 ], [2 ,3 ], [1 ,2 ,3 ].

3



(a) Define an inductive predicate is-sublist ls xs which holds when xs is
a sublist of ls. Demonstrate the correctness of your definition using
examples. (4 marks)

(b) Define a function sublist-fun which returns a list of all the sublists of
a list. (2 marks)

(c) Prove that is-sublist ls xs if and only if xs ∈ set (sublist-fun ls).
(10 marks)

5 Operational Semantics of IMP (25 marks)

Consider the following simple imperative language IMP, with a skip state-
ment, assignment of variables to arithmetic expressions, sequencing, condi-
tionals (“if-then-else”) and while loops. Variables can only be of type nat ;
their names are just strings. The state of a program is a valuation of all the
variables (i.e., a mapping from variable names to their current value). The
syntax of arithmetic expressions and Boolean expressions is left unspecified:
they are represented by functions that take a state as parameter, to get the
values of the variables, and return the result of the expression.

type-synonym vname = string
type-synonym state = vname ⇒ nat
type-synonym aexp = state ⇒ nat
type-synonym bexp = state ⇒ bool

datatype
com = SKIP
| Assign vname aexp (- ::= - [1000 ,61 ] 61 )
| Seq com com (-;; - [60 , 61 ] 50 )
| If bexp com com (IF - THEN - ELSE - FI [0 ,0 ,61 ] 61 )
| While bexp com (WHILE - DO - OD [0 ,45 ] 61 )

type-synonym config = com × state

In order to make the programs more readable, we introduce some syntax:

• the term Assign x a can be written as x ::= a,

• the term Seq c1 c2 as c1 ;; c2,

• the term If b c1 c2 as IF b THEN c1 ELSE c2 FI, and

• the while loop While b c as WHILE b DO c OD.

We now consider the semantics of this language, i.e. the meaning of a
program. Relational big-step semantics of a language can be defined as a
ternary relation between the program c, the initial state s, and the final

4



state s ′ obtained by executing c from s. We define our big-step semantics as
an inductive relation big-step, denoted by (c,s) ⇒ s ′, on configurations and
final states, where a configuration is a pair of a program and an initial state.

(SKIP , s) ⇒ s
Skip

(x ::= a, s) ⇒ s(x := a s)
Assign

(c1, s) ⇒ s ′′ (c2, s ′′) ⇒ s ′

(c1;; c2, s) ⇒ s ′ Seq

b s (c1, s) ⇒ s ′

(IF b THEN c1 ELSE c2 FI , s) ⇒ s ′ IfTrue

¬ b s (c2, s) ⇒ s ′

(IF b THEN c1 ELSE c2 FI , s) ⇒ s ′ IfFalse

¬ b s

(WHILE b DO c OD , s) ⇒ s
WhileFalse

b s (c, s) ⇒ s ′′ (WHILE b DO c OD , s ′′) ⇒ s ′

(WHILE b DO c OD , s) ⇒ s ′ WhileTrue

Next we consider defining an interpreter function cval that takes an IMP
program c and an initial state s, as well as a clock t, and returns either None,
if the program runs out of time, or Some (s ′, t ′), if program execution ter-
minates in a final state s ′ with remaining clock t ′. (We need the clock to
ensure the interpreter terminates, since all HOL definitions must be total.)

fun cval :: com ⇒ state ⇒ nat ⇒ (state × nat) option
where

cval SKIP s t = Some (s,t)
| cval (x ::= a) s t = Some (s (x := a s),t)
| cval (c1 ;; c2 ) s t =

(case (cval c1 s t) of
None ⇒ None
| Some (s2 ,t2 ) ⇒ (cval c2 s2 (if t < t2 then t else t2 )))

| cval (IF b THEN c1 ELSE c2 FI ) s t =
cval (if b s then c1 else c2 ) s t

| cval (WHILE b DO c OD) s t =
(if b s
then

(if t = 0 then None else cval (Seq c (WHILE b DO c OD)) s (t − 1 ))
else Some (s,t))

5



The interpreter cval can be said to define a functional big-step semantics for
IMP. Now let us prove equivalence between the relational big-step semantics
and the functional big-step semantics.

(a) Prove that big-step is deterministic (3 marks).

(b) Prove that increasing the clock (allowing more time) for a terminat-
ing execution will only increase the final clock by the same amount.
(3 marks)

(c) Prove that execution of a terminating program always decreases the
clock. (3 marks)

(d) Prove that the relational semantics implies the functional semantics,
i.e., executions in the relational semantics can be simulated by the
functional semantics. (6 marks)

(e) Prove that the functional semantics is contained in the relational se-
mantics. Prove the equivalence of the two semantics as a corollary.
(10 marks)

6


	Higher-Order Logic (16 marks) 
	List Datatype (14 marks)
	Normal Forms for Propositional Formulae (29 marks)
	Sublists (16 marks)
	Operational Semantics of IMP (25 marks)

