
COMP4161 S2/2017
Advanced Topics in Software Verification

Assignment 3

This assignment starts on Tuesday, 2017-10-10 and is due on Monday, 2017-
10-23, 23:59h. We will accept Isabelle .thy files only. In addition to this pdf
document, please refer to the provided Isabelle template for the definitions
and lemma statements.

The assignment is take-home. This does NOT mean you can work in groups.
Each submission is personal. For more information, see the plagiarism pol-
icy: https://student.unsw.edu.au/plagiarism

Submit using give on a CSE machine: give cs4161 a3 a3.thy

For all questions, you may prove your own helper lemmas, and you may use
lemmas proved earlier in other questions. You can also use automated tool
like sledghammer. If you can’t finish an earlier proof, use sorry to assume
that the result holds so that you can use it if you wish in a later proof. You
won’t be penalised in the later proof for using an earlier true result you were
unable to prove, and you’ll be awarded part marks for the earlier question
in accordance with the progress you made on it.

1 Huffman Code (65 marks)

A Huffman code is an algorithm for lossless compression. Given a distribu-
tion of the relative frequency of each character, the algorithm assigns the
most frequent character the shortest encoding. The encoding, a stream of
bits, is a so-called variable-length prefix code. A code is a prefix code when
no no two symbols are encoded as a prefix of the other.

As an example for a Huffman encoding, consider the sequence of symbols
abcdaa. The frequency of the occurrence of the symbol a is 3, while that of
each other symbol is 1. In this case, Huffman code will encode a with the
shortest code (e.g. True), and all other symbols with longer codes, starting
with False.

In this assignment we will define Huffman encoding and decoding in Isabelle,
and prove, that under the right conditions, decoding an encoded sequence
of symbols will yield back the original sequence of symbols.

As the first step of computing a Huffman code, we define a function freq-list
that computes the frequency of each symbol in a given sequence. We leave
the alphabet of symbols open as a type variable ′a. The input sequence to

1

https://student.unsw.edu.au/plagiarism

this function is not necessarily exactly the text that we will later encode, it
is merely a text corpus that has the expected alphabet and distribution of
letters in this alphabet.

(a) Define the function freq-of that produces a list of pairs, in which the
first component is the symbol and the second component the number
of times the symbol occurs in the input list. (3 marks)
Test function with a few examples. For concrete test cases, you can
use the type string in Isabelle, which is defined as char list. Concrete
strings are written with two single quotes, e.g. ′′abc ′′.

(b) Prove that each character is mentioned only once in the result of
freq-of. (5 marks)

Given a frequency list of symbols, we can then construct the so-called Huff-
man tree. The paths in the Huffman tree will give us the code for each sym-
bol while ensuring the prefix-property and keeping track of the frequency of
symbols.

datatype ′a htree = Leaf ′a int | Branch ′a htree ′a htree

The template gives the full definition of the Huffman tree construction. It
first sorts the frequency list, converts it into a list of Leaf trees, and then
keeps merging sub-trees in this list by weight (frequency) until the list only
contains one element. This element is the resulting Huffman tree.

TF

cd

b

a

11

1

3

2

3

6

To turn the tree into a map of symbols to codes, we traverse the tree from
the root, adding False to the output when we go left, and True when we
go right. See function code-list in the template, which returns a list of pairs
where the first component is the symbol, and the second component is the
code (bool list) for that symbol. The function code-map flips the first and
second components of such a list, so we can also translate codes back into
symbols.

The Isabelle library function map-of turns such (′a × ′b) lists into functions
′a ⇒ ′b option, also called map from ′a to ′b.

2

(c) Given a map ′a ⇒ bool list option, write a function encoder that turns
a list of symbols into code (a list of bool). You can assume that the
map has a translation for all characters of the input. (3 marks)

(d) The template gives a definition for the corresponding decoder. It con-
sumes one bit of input at a time, checking if the input consumed so far
yields a valid code or not. If yes, it emits the corresponding symbol,
if no, it keeps accumulating input.

Note that both encoder and decoder are so far independent of Huff-
man trees. They merely expect coding maps for single characters and
translate them into functions for lists of characters. They will only be-
have correctly if the maps they get as input are inverse to each other,
and if the code is indeed a prefix code. The domain dom of a map is
the set of all inputs for which the output is not None.

Prove the following lemma:

[[is-inv mp mp ′; unique-prefix mp ′; set xs ⊆ dom mp; [] /∈ dom mp ′]]
=⇒ decoder mp ′ [] (encoder mp xs) = xs

The template lists a few helper lemmas that you can, but do not have
to prove to get there. (15 marks)

(e) Show that the inverse of a map can be constructed by swapping the
first and second components of the pairs in the list, if the lists are
distinct in the first and second components: (5 marks)

[[distinct (map snd xs); distinct (map fst xs)]]
=⇒ is-inv (map-of xs) (map-of (map (λ(a, b). (b, a)) xs))

(f) Write a function letters-of that for any ′a htree returns the set of
symbols ′a that is stored in its leaves. (3 marks)

(g) Write a function distinct-tree, analogous to distinct on lists, that de-
cides whether the letters of an ′a htree are distinct from each other.
(3 marks)

(h) Show that code-list turns any tree with with distinct letters into a list
with distinct symbols in the first component. (5 marks)

(i) Show that if the characters of a frequency list are distinct, so are the
letters of the corresponding Huffman tree. (10 marks)

(j) Prove that the code-list and code-map lists, when turned into maps,
satisfy the conditions of the decoder lemma when the input is a Huff-
man tree whose letters cover the input string and whose alphabet
contains at least two separate letters. (13 marks)

3

2 C verification: primality test (35 marks)

The function is-prime-2 below tests whether a given number n is a prime
or not.

unsigned int is_prime_2(unsigned int n)

{

/* Numbers less than 2 are not prime. */

if (n < 2) {

return 0;

}

/* 2 is the only even number that is prime */

if (n % 2 == 0) {

return (n == 2);

}

/* Find the first non-trivial factor of ’n’. */

unsigned int i = 3;

while (n % i != 0) {

i+=2;

}

/* If the first factor found is ’n’, it is a prime */

return (i == n);

}

We will verify that is-prime-2 correctly computes the primality of n. In
other words, we will show that is-prime-2 returns 1 if and only if the input
n is a prime and that the computation always terminates.

(a) Define a predicate is-prime-inv which states the invariant of the while
loop in the is-prime-2 function. (4 marks)

(b) Define a measure is-prime-measure which returns a natural number
that strictly decreases each loop iteration. (3 marks)

(c) Using AutoCorres (“apply wp”), show is-prime-2 is correct. To prove
this, first introduce the following lemmas:

(c1) prime-2-or-odd which states that a prime number n is either equal
to 2 or an odd number. (3 marks)

(c2) is-prime-precond-implies-inv which states that the invariant holds
when you first enter the loop; (3 marks)

(c3) is-prime-body-obeys-inv which states that the invariant holds be-
tween loop iterations; (5 marks)

4

(c4) is-prime-body-obeys-measure which states that the measure de-
creases between loop iterations; (5 marks)

(c5) is-prime-body-implies-no-overflow which states that the loop in-
variant implies there is no overflow (4 marks)

(c6) is-prime-inv-implies-postcondition which states that the invari-
ant implies the function’s post-condition when the loop finally
finishes. (4 marks)

(d) Finally, use these lemmas to complete the proof. (4 marks)

Hints

• While C uses 32-bit words (of Isabelle type word32), AutoCorres uses
a technique called word abstraction, allowing you to reason using nat’s
instead. This comes at the price of being obliged to prove that arith-
metic operations don’t overflow UINT MAX (i.e., 232 − 1).

• The tactic “apply arith” may help to solve ‘obvious’ proofs involv-
ing arithmetic. Additionally, you may find sledgehammer to also be
effective at proofs that seem obvious.

• Feel free to modify any of the definitions or lemmas in the template.
The goal is to prove the function is correct: if changing some of the
provided lemmas helps you achieve this, don’t be afraid to do it.

5

	Huffman Code (65 marks)
	C verification: primality test (35 marks)

