
COMP4161 T3/2019
Advanced Topics in Software Verification

Assignment 2

This assignment starts on Friday 18th of October and is due on Friday
1st of November 6PM. We will accept Isabelle theory (.thy) files.

The assignment is take-home. This does NOT mean you can work in groups.
Each submission is personal. For more information, see the plagiarism pol-
icy: https://student.unsw.edu.au/plagiarism

Submit using give on a CSE machine:

give cs4161 a2 files ...

For example:

give cs4161 a2 a2.thy

Hint: there are hints at the end of this document.

1 A theory of network connectivity (25 marks)

1.1 Background

In this section, we will consider a simple model of connectivity between
devices in a hierarchical network.

We will use natural numbers to stand for device identifiers, and will describe
network topologies as a set of connectivity conditions. The conditions are of
two kinds:

1. Joinable n m means that the devices m and n are connected, in the
sense that they can send messages to each other via some (unspecified)
route.

2. Above n m, pronounced “m is above n”, means that device m is an
uplink for n. In other words, m can forward messages to other devices
in the network on behalf of n.

From an initial set A of conditions describing the network topology, we can
construct a set connection A of all connections between devices that can
be established in the network. connection A is defined inductively by the
following rules:

1

https://student.unsw.edu.au/plagiarism

Router 1

Computer 1 Computer 2

Router 2

Computer 3

Figure 1: An example topology.

1. I can forward messages on behalf of myself:

Above a a ∈ connection A

2. The connections in the initial topology are available:

ϕ ∈ A

ϕ ∈ connection A

3. If you and I are connected, then I and you are connected:

Joinable a b ∈ connection A

Joinable b a ∈ connection A

4. My uplink’s uplink is my (virtual) uplink:

Above a b ∈ connection A Above b c ∈ connection A

Above a c ∈ connection A

5. We are connected if we share a common uplink:

Above a b ∈ connection A Above c b ∈ connection A

Joinable a c ∈ connection A

6. If my uplink is connected to someone, then so am I:

Above a b ∈ connection A Joinable b c ∈ connection A

Joinable a c ∈ connection A

As an example, consider the topology illustrated in Figure 1, where arrows
represent the Above relationship. Here Computers 1 and 2 are joinable
because of their common uplink (Router 1), and so are Computers 2 and 3.
Computers 1 and 3 are not joinable because there is no common uplink to
forward messages between the routers.

2

1.2 Questions

(a) (3 marks) Implement the topology described in Figure 1 as a set of
Above judgements, and prove that computers 1 and 2 are joinable.

Prove that the connectivity relation satisfies these properties:

(b) (2 marks) ϕ ∈ connection A =⇒ ϕ ∈ connection (A ∪ B)

(c) (3 marks) connection (connection A) = connection A

(d) (2 marks) ϕ ∈ connection (A ∪ B) =⇒ ∃C D . C ⊆ connection A ∧
D ⊆ connection B ∧ ϕ ∈ connection (C ∪ D)

(e) (2 marks) ϕ ∈ connection ∅ =⇒ is-refl ϕ

(f) (2 marks) is-refl ϕ =⇒ ϕ ∈ connection A

(g) (2 marks) ϕ ∈ connection A =⇒ ϕ ∈ connection (A − {ϕ | is-refl ϕ})

(h) (3 marks) [[Above a b ∈ connection A;
∧

a b. Above a b /∈ A]] =⇒ a =
b

(i) (3 marks) [[ϕ ∈ connection (C ∪ D); C ⊆ connection A; D ⊆ connec-
tion B]] =⇒ ϕ ∈ connection (A ∪ B)

(j) (3 marks) connection A = connection B =⇒ connection (A ∪ C) =
connection (B ∪ C)

2 A theory of communicating devices (15 marks)

2.1 Background

We will now extend our (static) model of a network to include the dynamic
behaviour of processes communicating through the network. For simplicity
we do not model data: communication is just a synchronous handshake with
no information being exchanged. The state of the network is described by
this datatype:

datatype process =

Cond condition

| Par process process

| Input nat process

| Output nat process

| Nil

3

A network may: contain connectivity assumptions (Cond ϕ); consist of mul-
tiple processes running in parallel, possibly on different devices (Par P Q);
contain a process that does nothing (Nil); have device m ready to receive a
message and then continue as P (In m P); or have a device ready to send a
message (Output m P).

The behaviour of the network is captured with a small-step transition re-
lation semantics A P α P ′, meaning that in a network with topology A,
the process P can perform the action α and transition to the state P ′. The
actions can be input, output or internal (LTau):

datatype action = LInput nat | Output nat | LTau

The frame of a process collects all its top-level conditions, which taken
together describe the current network topology. Conditions underneath In
and Out prefixes represent ways the topology may change in the future.

An output or input prefix may send or receive a message, consuming the
prefix:

semantics A (Input n P) (LInput n) P

semantics A (Output n P) (LOutput n) P

If a process P can perform an action, it may also perform that action with
Q sitting inertly in parallel. The derivation of the transition from P may
use the connectivity information present in frame Q :

semantics (A ∪ frame Q) P α P ′

semantics A (Par P Q) α (Par P ′ Q)

If two parallel processes P and Q can perform an input and output, respec-
tively, and if the devices are joinable, then P and Q may synchronise to
perform a communication action (LTau):

semantics (A ∪ frame Q) P (LOutput n) P ′

semantics (A ∪ frame P) Q (LInput m) Q ′

Joinable n m ∈ connection (A ∪ frame P ∪ frame Q)

semantics A (Par P Q) LTau (Par P ′ Q ′)

Symmetric versions of the rules for parallel and communication are elided.

2.2 Questions

Prove that the semantics satisfies the following:

4

(a) (5 marks) semantics A P α Q =⇒ semantics (A ∪ B) P α Q

(b) (5 marks) semantics A P α Q =⇒ ∃β Q ′. semantics ∅ P β Q ′

(c) (5 marks) [[semantics A P α Q ; connection A = connection B]] =⇒
semantics B P α Q

3 A theory of behavioural equivalence (60 marks)

3.1 Background

It is often useful to be able to say when two distinct processes have the
same behaviour. For the purposes of this exercise, we will use trace equiv-
alence for this purpose. Trace equivalence may be intuitively characterised
as follows. Imagine you are presented with a log (aka trace) of all the events
that transpired when a process ran to completion. You know that the log
describes an execution of either P or Q, but you haven’t been told which.
By inspecting the log, can you figure out which process the log originates
from? If the answer to this question is always no for every log, we say that
P and Q are trace equivalent.

Let’s formalise this intuitive understanding. A process is stuck if it has run
to completion; that is, if it has no outgoing transitions:

stuck P ≡ ∀α P ′. semantics ∅ P α P ′ −→ False

The relation list-trans lifts semantics from single actions to sequences of
actions. A trace of a process is a sequence of actions it can take that lead
to a stuck state. The set of all such traces is given by

traces-of P = {tr | ∃Q . list-trans ∅ P tr Q ∧ stuck Q}

Finally, two processes are trace equivalent if they have the same sets of
traces—or in other words, if for every trace we cannot tell which process it
originated from:

trace-eq P Q = (traces-of P = traces-of Q)

3.2 Questions

(a) (3 marks) Show that trace equivalence is indeed an equivalence rela-
tion:

trace-eq P P

trace-eq P Q =⇒ trace-eq Q P

[[trace-eq P Q ; trace-eq Q R]] =⇒ trace-eq P R

5

(b) (4 marks) [[stuck P ; stuck Q]] =⇒ trace-eq P Q

(c) (8 marks) stuck R =⇒ traces-of P ⊆ traces-of (Par P R)

(d) (4 marks) The previous question used set inclusion instead of trace
equivalence because inclusion does not hold in the other direction: it
is possible to introduce more traces by adding a stuck parallel compo-
nent. Give an example of concrete P and R such that the following
proposition is false:

stuck R =⇒ traces-of (Par P R) ⊆ traces-of P

(e) (7 marks) Use your counterexample from the previous question to
formally prove

(
∧

P R. stuck R =⇒ traces-of (Par P R) ⊆ traces-of P) =⇒ False

Fill in the gaps to complete a proof that parallel composition is associative
up to trace equivalence:

(f) (6 marks) semantics A (Par P (Par Q S)) α R =⇒ ∃P ′ Q ′ S ′. R =
Par P ′ (Par Q ′ S ′) ∧ semantics A (Par (Par P Q) S) α (Par (Par
P ′ Q ′) S ′)

(g) (2 marks) list-trans A (Par (Par P Q) S) tr (Par (Par P ′ Q ′) S ′) =
list-trans A (Par P (Par Q S)) tr (Par P ′ (Par Q ′ S ′))

(h) (4 marks) stuck (Par P Q) = (stuck P ∧ stuck Q)

(i) (4 marks) trace-eq (Par (Par P Q) S) (Par P (Par Q S))

Finally, prove that Nil is the unit of parallel composition, and that parallel
composition commutes:

(j) (9 marks) trace-eq P (Par P Nil)

(k) (9 marks) trace-eq (Par P Q) (Par Q P)

4 Hints

• You are allowed to use sledgehammer as much as you like.

• You are allowed—encouraged, in fact—to use solutions to questions as
lemmas in the answers to other questions.

• Most proofs will require induction of one kind or the other. The rele-
vant induction rules are connection.induct, semantics.induct and
list.induct.

6

• The assumptions of theorems stated in the assumes-show format are
accessible via the fact named assms. For example, you can do simp

add: assms or rule assms(1). The assumptions can be added di-
rectly to the goal state by beginning your proof with the command
using assms; that is usually what you want to do before starting an
induction.

• The equivalent of spec for the meta-logic universal quantifier is called
meta spec.

• semantics.simps is sometimes useful for doing case analysis on the
derivation of a transition, but is loop-prone. It is often more useful
to do this case analysis using specialised elimination rules like par

and nil. Another option is to specialise semantics.simps to the
pattern you want to decompose before adding it to the simpset. For
example, if your assumptions mention a transition from a process Par
P Q, adding the following will decompose it into assumptions about
transitions from P and Q.

simp add: semantics.simps[where ?a2.0="Par P Q" for P

Q,simplified]

• Some inductive proofs will require you to strengthen the induction
hypothesis in order to close the proof. Think about which variables
should be arbitrary.

• For the later exercises, your life will be much easier if you decom-
pose your proofs into auxiliary lemmas. For example, proofs of trace
equivalence naturally decompose into separate proofs about stuck and
list-trans. For proofs about list-trans, a good strategy is to first prove
a similar lemma for single-step transitions (semantics), then lift them
to list-trans by induction on the action sequence.

7

	A theory of network connectivity (25 marks)
	Background
	Questions

	A theory of communicating devices (15 marks)
	Background
	Questions

	A theory of behavioural equivalence (60 marks)
	Background
	Questions

	Hints

