IIIATA | %

COMP 4161
Data61 Advanced Course

Advanced Topics in Software Verification
Miki Tanaka,
Johannes Aman Pohjola,

June Andronick,
Christine Rizkallah

1 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Binary Search

DATA
(java.util.Arrays) I

1 public static int binarySearch(int[] a, int key) {
2 int low = 0;

3 int high = a.length - 1;

4:

5: while (low <= high) {

6 int mid = (low + high) / 2;

7 int midVal = a[mid];

8

9: if (midVal < key)

10: low = mid + 1

11: else if (midVal > key)

12: high = mid - 1;

13: else

14: return mid; // key found

15: }

16: return -(low + 1); // key not found.
17: ¥

2 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License




Binary Search <
(java.util.Arrays) I I®

1: public static int binarySearch(int[] a, int key) {
2: int low = 0;

3: int high = a.length - 1;

4:

5: while (low <= high) {

6: int mid = (low + high) / 2;

7: int midVal = a[mid];

8:

9: if (midVal < key)

10: low = mid + 1

11: else if (midVal > key)

12: high = mid - 1;

13: else

14: return mid; // key found

15: }

16: return -(low + 1); // key not found.

17: ¥

6: int mid = (low + high) / 2;

http://googleresearch.blogspot.com/2006/06/
extra-extra-read-all-about-it-nearly.html

2 | COMP4161 | © Data61, Commons Attribution



http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

Organisatorials AT
a6
~N~-

When  Tue 10:00 - 12:00
Wed  10:00 — 12:00

Where Tue:  Electrical Engineering G04 (K-G17-G04)
Wed:  UNSW Business School 205 (K-E12-205)

http://www.cse.unsw.edu.au/~cs4161/

3 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License


http://www.cse.unsw.edu.au/~cs4161/

About us DATA
@

The trustworthy systems verification team

=» Functional correctness and security of the seL4 microkernel
Security< Isabelle/HOL model +» Haskell model ++C code <+Binary

4 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



About us DATA
@

The trustworthy systems verification team

=» Functional correctness and security of the seL4 microkernel
Security< Isabelle/HOL model +» Haskell model ++C code <+Binary
=» 10000 LOC / 500000 lines of proof; about 25 person years of effort

4 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



About us DATA
@

The trustworthy systems verification team

=» Functional correctness and security of the seL4 microkernel

Security< Isabelle/HOL model +» Haskell model ++C code <+Binary
=» 10000 LOC / 500000 lines of proof; about 25 person years of effort
=» Cogent code/proof co-generation; CakeML verified compiler; etc.

4 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



About us DATA
@

The trustworthy systems verification team
=» Functional correctness and security of the seL4 microkernel
Security< Isabelle/HOL model +» Haskell model ++C code <+Binary
=» 10000 LOC / 500000 lines of proof; about 25 person years of effort
=» Cogent code/proof co-generation; CakeML verified compiler; etc.

Open Source
http://seld.systems
https://ts.databl.csiro.au/projects/TS/cogent.pml
https://cakeml.org

4 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License


http://sel4.systems
https://ts.data61.csiro.au/projects/TS/cogent.pml
https://cakeml.org

About us DATA
@

The trustworthy systems verification team
=» Functional correctness and security of the seL4 microkernel
Security< Isabelle/HOL model +» Haskell model ++C code «+Binary
=» 10000 LOC / 500000 lines of proof; about 25 person years of effort
=» Cogent code/proof co-generation; CakeML verified compiler; etc.

Open Source
http://seld.systems
https://ts.datab6l.csiro.au/projects/TS/cogent.pml
https://cakeml.org

We are always embarking on exciting new projects.
We offer

=» summer student scholarship projects
=>» honours and PhD theses
=» research assistant and verification engineer positions

4 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License


http://sel4.systems
https://ts.data61.csiro.au/projects/TS/cogent.pml
https://cakeml.org

What you will learn T
| €D
N

=» how to use a theorem prover

5 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



What you will learn DATA
e

=» how to use a theorem prover
=» background, how it works

5 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



What you will learn DATA
e

=» how to use a theorem prover
=» background, how it works
=» how to prove and specify

5 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



What you will learn DATA
e

=» how to use a theorem prover
=» background, how it works

=» how to prove and specify

=» how to reason about programs

5 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



What you will learn DATA
e

=» how to use a theorem prover
=» background, how it works

=» how to prove and specify

=» how to reason about programs

Health Warning

Theorem Proving is addictive

5 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



Prerequisites D oA
@

This is an advanced course. It assumes knowledge in

=* Functional programming
=» First-order formal logic

6 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Prerequisites D oA
@

This is an advanced course. It assumes knowledge in

=* Functional programming
=» First-order formal logic

The following program should make sense to you:

map f [] =
map f (xixs) = fx: mapfxs

6 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Prerequisites D oA
@

This is an advanced course. It assumes knowledge in

=* Functional programming
=» First-order formal logic

The following program should make sense to you:

map f [] =
map f (xixs) = fx: mapfxs

You should be able to read and understand this formula:

Ax. (P(x) — ¥x. P(x))

6 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



Content — Using Theorem DATA | %
Provers

=» Intro & motivation, getting started

7 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Content — Using Theorem DATA | %
Provers

=» Intro & motivation, getting started

=» Foundations & Principles

e Lambda Calculus, natural deduction
o Higher Order Logic, Isar (part 1)
o Term rewriting

7 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Content — Using Theorem DATA I %
Provers

=» Intro & motivation, getting started

=» Foundations & Principles
e Lambda Calculus, natural deduction
o Higher Order Logic, Isar (part 1)
o Term rewriting

=» Proof & Specification Techniques
e Inductively defined sets, rule induction
o Datatypes, recursion, induction, Isar (part 2)
e Hoare logic, proofs about programs, invariants
e C verification
e Practice, questions, examp prep

7 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



Content — Using Theorem DATA I %
Provers

Rough timeline

=» Intro & motivation, getting started [today]

=» Foundations & Principles

o Lambda Calculus, natural deduction [1,2]
o Higher Order Logic, Isar (part 1) [37]
o Term rewriting [4]

=» Proof & Specification Techniques

o Inductively defined sets, rule induction [5]
o Datatypes, recursion, induction, Isar (part 2) [6, 7"]
o Hoare logic, proofs about programs, invariants [8]
o C verification [9]
e Practice, questions, examp prep [10°]

2al due; a2 due; a3 due

7 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



What you should do to have a
. IIIATA | %
chance at succeeding

8 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License


https://student.unsw.edu.au/plagiarism

What you should do to have a
. IIIATA | %
chance at succeeding

=>» attend lectures

8 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribut


https://student.unsw.edu.au/plagiarism

What you should do to have a
. IIIATA | %
chance at succeeding

=» attend lectures
=> try Isabelle early

8 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribut


https://student.unsw.edu.au/plagiarism

What you should do to have a
. IIIATA | %
chance at succeeding

=>» attend lectures
=> try Isabelle early
=» redo all the demos alone

8 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attri


https://student.unsw.edu.au/plagiarism

What you should do to have a
. IIIATA | %
chance at succeeding

=» attend lectures

=> try Isabelle early

=» redo all the demos alone

=» try the exercises/homework we give, when we do give some

8 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License


https://student.unsw.edu.au/plagiarism

What you should do to have a
. DATA | %
chance at succeeding

attend lectures

try Isabelle early

redo all the demos alone

try the exercises/homework we give, when we do give some

DO NOT CHEAT

e Assignments and exams are take-home. This does NOT mean you
can work in groups. Each submission is personal.
e For more info, see Plagiarism Policy?

¢ il

“ https://student.unsw.edu.au/plagiarism

8 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License


https://student.unsw.edu.au/plagiarism

Credits D a7 | @

some material (in using-theorem-provers part) shamelessly stolen from

David Basin, Burkhardt Wolff

Don’t blame them, errors are ours

9 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



What is a proof? DATA | %

to prove

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



What is a proof? DATA | %

to prove (Merriam—Webster)

=» from Latin probare (test, approve, prove)

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



What is a proof? DATA | %

to prove (Merriam—Webster)

=» from Latin probare (test, approve, prove)
=» to learn or find out by experience (archaic)

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



What is a proof? DATA I %

to prove (Merriam—Webster)
=» from Latin probare (test, approve, prove)
=» to learn or find out by experience (archaic)
=» to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court

10 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



What is a proof? DATA I %

to prove (Merriam—Webster)

=» from Latin probare (test, approve, prove)
=» to learn or find out by experience (archaic)
=» to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court
pops up everywhere
=» politics (weapons of mass destruction)
=» courts (beyond reasonable doubt)
=» religion (god exists)
=» science (cold fusion works)

10 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



What is a mathematical proof? DATA | %

In mathematics, a proof is a demonstration that, given certain
axioms, some statement of interest is necessarily true. (Wikipedia)

Example: \/2 is not rational.
Proof:

11 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



What is a mathematical proof? |DATA | %

In mathematics, a proof is a demonstration that, given certain
axioms, some statement of interest is necessarily true. (Wikipedia)

Example: \/2 is not rational.

Proof: assume there is r € Q such that r? = 2.

Hence there are mutually prime p and g with r = §.

Thus 2¢° = p?, i.e. p? is divisible by 2.

2 is prime, hence it also divides p, i.e. p = 2s.

Substituting this into 2¢% = p? and dividing by 2 gives g°> = 2s. Hence,
g is also divisible by 2. Contradiction. Qed.

11 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



Nice, but.. DATA | @

=» still not rigorous enough for some

e what are the rules?

e what are the axioms?

e how big can the steps be?

e what is obvious or trivial?
=» informal language, easy to get wrong
=» easy to miss something, easy to cheat

12 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Nice, but.. DATA | @

=¥ still not rigorous enough for some
what are the rules?

what are the axioms?

how big can the steps be?
what is obvious or trivial?

=» informal language, easy to get wrong
=» easy to miss something, easy to cheat

Theorem. A cat has nine tails.
Proof. No cat has eight tails. Since one cat has one more tail than no
cat, it must have nine tails.

12 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



What is a formal proof? DATA | %

A derivation in a formal calculus

13 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



What is a formal proof? A
e

A derivation in a formal calculus
Example: AA B — B A A derivable in the following system

XesS " SU{XyryYy | |
Rules: SF x (assumption) oo (impl)
SEX SkY SUiX,yir~z

stxay (o) SuxAyyrz (©onB)

13 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



What is a formal proof? A
e

A derivation in a formal calculus
Example: AA B — B A A derivable in the following system

Xes (assumption) SUXFY (impl)
Rules: S X SEX—Y
SEX Sky . SUXYirZ .
stxay (o) SuxAyyrz (©onB)
Proof:
1. {A,B}+B (by assumption)
2. {A,B}F A (by assumption)
3. {A,B} - BANA (by conjl with 1 and 2)
a. {ANB}FBAA (by conjE with 3)
5. {}FAAB — BAA (by impl with 4)

13 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



What is a theorem prover? DATA | %

Implementation of a formal logic on a computer.

=» fully automated (propositional logic)
=» automated, but not necessarily terminating (first order logic)
=» with automation, but mainly interactive (higher order logic)

14 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



What is a theorem prover? DATA | %

Implementation of a formal logic on a computer.

=» fully automated (propositional logic)
=» automated, but not necessarily terminating (first order logic)
=» with automation, but mainly interactive (higher order logic)

=» based on rules and axioms
=» can deliver proofs

14 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



What is a theorem prover? DATA | %

Implementation of a formal logic on a computer.

=» fully automated (propositional logic)
=» automated, but not necessarily terminating (first order logic)
=» with automation, but mainly interactive (higher order logic)

=» based on rules and axioms
=» can deliver proofs

There are other (algorithmic) verification tools:

=» model checking, static analysis, ...
=» usually do not deliver proofs
=» See COMP3153: Algorithmic Verification

14 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



Why theorem proving? DATA | %

=» Analysing systems/programs thoroughly

15 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Why theorem proving? DATA | %

=» Analysing systems/programs thoroughly
=» Finding design and specification errors early

15 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Why theorem proving? DATA | %

=» Analysing systems/programs thoroughly
=» Finding design and specification errors early
=» High assurance (mathematical, machine checked proof)

15 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Why theorem proving? DATA | %

=» Analysing systems/programs thoroughly

=» Finding design and specification errors early

=» High assurance (mathematical, machine checked proof)
=» it's not always easy

=» it's fun

15 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



M.am theorem proving system for {ATA | %
this course

\
)
S !
a9,
Isabelle

=>» used here for applications, learning how to prove

16 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



What is Isabelle? DATA | %

A generic interactive proof assistant

17 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



What is Isabelle? DATA | %

A generic interactive proof assistant
=» generic:

not specialised to one particular logic
(two large developments: HOL and ZF, will mainly use HOL)

17 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



What is Isabelle?

IIIATA | %

A generic interactive proof assistant

=» generic:

not specialised to one particular logic

(two large developments: HOL and ZF, will mainly use HOL)
=» interactive:

more than just yes/no, you can interactively guide the system

17 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



What is Isabelle?

IIIATA | %

A generic interactive proof assistant

=» generic:

not specialised to one particular logic

(two large developments: HOL and ZF, will mainly use HOL)
=» interactive:

more than just yes/no, you can interactively guide the system
=» proof assistant:

helps to explore, find, and maintain proofs

17 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



Why lsabelle?

IIIATA | %

free

widely used systems

active development

high expressiveness and automation

dii il

reasonably easy to use

18 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



Why Isabelle? DATA | @

free

widely used systems

active development

high expressiveness and automation
reasonably easy to use

ddi il

(and because we know it best ;-))

18 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



IJATA | %

If 1 prove it on the computer, it is correct, right?

19 | COMP4161 | ata61, CSIRO: provided under Creative Commons Attribution License



Ifl proveolt on the computer, it is {ATA | P
correct, right?

No, because:

20 | COMP4161 | © Data61, CSIRO: provided under Creative



Ifl proveolt on the computer, it is {ATA | P
correct, right?

No, because:

@ hardware could be faulty

20 | COMP4161 | (© Data61, CSIRO: provided under Creati



If | prove it on the computer, it is {ATA | P
correct, right?

No, because:

@ hardware could be faulty
@ operating system could be faulty

20 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



If 1 proveolt on the computer, it is IfATA I %
correct, right? &

No, because:

@ hardware could be faulty
@ operating system could be faulty
® implementation runtime system could be faulty

20 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



If | prove it on the computer, itis .-
corcht right? P IE‘AT”%
» Vight: N

No, because:

@ hardware could be faulty

@ operating system could be faulty

® implementation runtime system could be faulty
@ compiler could be faulty

20 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



If | prove it on the computer, itis .-
corcht right? P IE‘AT”%
» Vight: N

No, because:

@ hardware could be faulty

@ operating system could be faulty

® implementation runtime system could be faulty
@ compiler could be faulty

® implementation could be faulty

20 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Ifl proveolt on the computer, it is DATA | P
correct, right?

No, because:

@ hardware could be faulty
operating system could be faulty
implementation runtime system could be faulty

implementation could be faulty

@)

®

@ compiler could be faulty
®

® logic could be inconsistent

20 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Ifl proveolt on the computer, it is DATA | P
correct, right?

No, because:

@ hardware could be faulty
operating system could be faulty
implementation runtime system could be faulty
compiler could be faulty

logic could be inconsistent

@)

®

@

® implementation could be faulty

®

@ theorem could mean something else

20 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Ifl proveolt on the computer, it is {ATA | P
correct, right?

No, but:

21 | COMP4161 | © Data61, CSIRO: provided under Creative



If | prove it on the computer, it is -~
correct, right? " %
» MgHL! ~~

No, but:
probability for

=» OS and H/W issues reduced by using different systems

21 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Ifl proveolt on the computer, it is DATA | P
correct, right?

No, but:
probability for

=» OS and H/W issues reduced by using different systems
=» runtime/compiler bugs reduced by using different compilers

21 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



If | prove it on the computer, it is {ATA | P
correct, right?

No, but:
probability for
=» OS and H/W issues reduced by using different systems
=» runtime/compiler bugs reduced by using different compilers
=» faulty implementation reduced by having the right prover architecture

21 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Ifl proveolt on the computer, it is DATA | P
correct, right?

No, but:
probability for
=» OS and H/W issues reduced by using different systems
=» runtime/compiler bugs reduced by using different compilers
=» faulty implementation reduced by having the right prover architecture
=» inconsistent logic reduced by implementing and analysing it

21 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Ifl proveolt on the computer, it is IDATAI®
correct, right?

No, but:
probability for
=» OS and H/W issues reduced by using different systems
=» runtime/compiler bugs reduced by using different compilers
=» faulty implementation reduced by having the right prover architecture
=» inconsistent logic reduced by implementing and analysing it
=» wrong theorem reduced by expressive/intuitive logics

21 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Ifl proveolt on the computer, it is IDATAI®
correct, right?

No, but:
probability for
=» OS and H/W issues reduced by using different systems
=» runtime/compiler bugs reduced by using different compilers
=» faulty implementation reduced by having the right prover architecture
=» inconsistent logic reduced by implementing and analysing it
=» wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than manual proof

21 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Ifl proveolt on the computer, it is {ATA | P
correct, right?

Soundness architectures
careful implementation PVS

22 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



If | prove it on the computer, it is -~

icht? | €D
correct, right? &
Soundness architectures
careful implementation PVS
LCF approach, small proof kernel HOL4
Isabelle

22 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



If 1 prove it on the computer, it is <
: |
correct, right? &
Soundness architectures
careful implementation PVS
LCF approach, small proof kernel HOL4
Isabelle
explicit proofs + proof checker Coq
Twelf
Isabelle
HOL4

22 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Meta Logic D oA | @

Meta language:
The language used to talk about another language.

23 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Meta Logic D oA | @

Meta language:
The language used to talk about another language.

Examples:
English in a Spanish class, English in an English class

23 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Meta Logic DATA | @

Meta language:
The language used to talk about another language.

Examples:
English in a Spanish class, English in an English class

Meta logic:
The logic used to formalize another logic

Example:
Mathematics used to formalize derivations in formal logic

23 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Meta Logic — Example

Formulae: F

IIIATA | %

False

=V |

Syntax: Vo

F—F |

FAF |
[A-2]

Derivable: SF X X aformula, S a set of formulae

24 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Meta Logic — Example

7~
| DATA | %
b1
N~
Formulae: F

=V | F—F | FAF | False
Syntax: Vi= [A-Z]
Derivable: SF X X aformula, S a set of formulae
logic / meta logic
Xes SU{X}tY
SEX SEX—Y
SEX SkY SUiX.YprEz
SEXAY

SUIXAYIFZ

24 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



Isabelle’s Meta Logic DATA
@

25 | COMP4161 | © Data61, CSIRO: provided under Creati



/\ IJATA | %

Syntax:  Ax. F (F another meta level formula)
in ASCIIl: ~ !'!x. F

26 | COMP4161 | ata61, CSIRO: provided under Creative Commons Attribution License



/\ IJATA | %

Syntax:  Ax. F (F another meta level formula)
in ASCIIl: ~ !'!x. F

=» universal quantifier on the meta level
=» used to denote parameters
=» example and more later

26 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



= IJATA | %

Syntax: A=— B (A, B other meta level formulae)
in ASCIl: A ==> B

27 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



= IDATAI®

Syntax: A=— B (A, B other meta level formulae)
in ASCIl: A ==> B

Binds to the right:

A= B=C = A= (B= ()

Abbreviation:

A— B—C

[AB]=C

=» read: A and B implies C
=» used to write down rules, theorems, and proof states

27 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Example: a theorem D a7
@

mathematics: if x <0and y <0, then x+y <0

28 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Example: a theorem D a7
@

mathematics: if x <0and y <0, then x+y <0

formal logic: Fx<0Ay<0—x+y<0
variation: x<0y<0F x+y<0

28 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Example: a theorem D a7
@

mathematics: if x <0and y <0, then x+y <0

formal logic: Fx<0Ay<0—x+y<0

variation: x<0y<0F x4+y<0
Isabelle: lemma"x<0Ay <0—x+y<0"
variation: lemma ' [x <0y <0]=x+y<0"

28 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



Example: a theorem DATA
@

mathematics: if x <0and y <0, then x+y <0

formal logic: FXx<0Ay<0-—x+y<0

variation: x<0y<0F x4+y<0

Isabelle: lemma"x<0Ay <0—x+y<0"
variation: lemma ' [x <0y <0]=x+y<0"
variation: lemma

assumes "x < 0" and "y < 0" shows "x 4+ y < 0"

28 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Example: a rule DATA
@

logic: XANY

29 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



Example: a rule

IJATA | %

XY
logic: XANY

SEFX SkY
variation: SEXAY

29 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Example: a rule

IIIATA | %

XY
logic: XANY

SEX SkY
variation: SEXAY
Isabelle: [X; Y] = XAY

29 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



Example: a rule with nested
. . . IIIATA | %
implication

XY

XVvY Z 7
logic: Z

30 | COMP4161 | (© Data61, CSIRO: provided under Creati



Example: a rule with nested
. . . IIIATA | %
implication

XY

XVvY Z 7
logic: Z

SU{XIFZ SU{Y}rZ
variation: SU{XVY}rZ

30 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License



Example: a rule with nested
. . . IIIATA | %
implication

XY

XVvY Z 7
logic: Z

SU{XIFZ SU{Y}rZ
variation: SU{XVY}rZ

Isabelle: XVY X=Z,)Y=Z]—= Z

30 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



A IJATA | %

Syntax:  Ax. F (F another meta level formula)
in ASCIl:  %x. F

31 | COMP4161 | ata61, CSIRO: provided under Creative Commons Attribution License



A IIIATA | %

Syntax:  Ax. F (F another meta level formula)
in ASCIl:  %x. F

lambda abstraction
used for functions in object logics
used to encode bound variables in object logics

+ il

more about this in the next lecture

31 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

Getting started with Isabelle



System Architecture DATA | @

Isabelle — generic, interactive theorem prover

33 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



System Architecture DATA | @

Isabelle — generic, interactive theorem prover

Standard ML - logic implemented as ADT

33 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



System Architecture DATA | @

HOL, ZF - object-logics
Isabelle — generic, interactive theorem prover

Standard ML - logic implemented as ADT

33 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



System Architecture DATA | @

Prover IDE (jEdit) — user interface
HOL, ZF - object-logics
Isabelle — generic, interactive theorem prover

Standard ML - logic implemented as ADT

33 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



System Architecture DATA | @

Prover IDE (jEdit) — user interface
HOL, ZF - object-logics
Isabelle — generic, interactive theorem prover

Standard ML - logic implemented as ADT

User can access all layers!

33 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



System Requirements DATA | @

=» Linux, Windows, or MacOS X (10.8 +)
=» Standard ML (PolyML implementation)
=» Java (for jEdit)

Premade packages for Linux, Mac, and Windows + info on:
http://mirror.cse.unsw.edu.au/pub/isabelle/

34 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License


http://mirror.cse.unsw.edu.au/pub/isabelle/

Documentation DATA
@

Available from http://isabelle.in.tum.de
=» Learning Isabelle

Concrete Semantics Book

Tutorial on Isabelle/HOL (LNCS 2283)
Tutorial on lIsar

e Tutorial on Locales

=» Reference Manuals

o Isabelle/Isar Reference Manual
o lIsabelle Reference Manual
e Isabelle System Manual

=» Reference Manuals for Object-Logics

35 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License


http://isabelle.in.tum.de

jEdit/PIDE IDATA @

eo0o wsekO1A dainoth

File Edit Search Markers Folding View Utilities Macros Plugins _Help

[ D week0LA_demo.thy (~/teaching/compd161/1252/slides/weekO1A)) D]

. o

Bl text {* v
Note that free variables (eg x), bound variables (eg An) and g
constants (eg Suc) are displayed differently. *} E

term "x*

tern " x*

term "Succ x"

term "Suc x = Succ y"
> |term

text
~ |dectare [[show_types]]
> |[term "Suc x = Succ y"

e types inside terms: *}

text {* To switch off again: *}
~ |dectare [[show_types=false]]
¥ |term "Suc x = Succ y"

text {* @ and + are overloaded: *}

=
| E—

nron "n 4+ n = A"

100% +] () Tracing & Auto update

“Suc x*
:: "nat"

36 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License




jEdit/PIDE IDATA @

800 " KOLA demo.thy

File Edit Search Markers Folding View Utiliies Macros Plugins _Help

[ week01A_demo.thy (~/teaching/compa161/1252/slides/ week01A)) )

. o

Bl text {* v
Note that free variables (eg x), bound variables (eg An) and g
constants (eg Suc) are displayed differently. *} g

term "x*

tern " x*

term "Succ x"

term "Suc x = Succ y"
> |term

text e types inside terms: *}
~ |dectare [[show types]] e
* |term "Suc x = Succ y"

text {* To switch off again: *} B

~ |dectare [[show_types=false]]
¥ |term "Suc x = Succ y"

~ |text {* @ and + are overloaded: *}

nron "n 4+ n = A"

1608 Oacos Ao upcine

"Suc x'
.. "pat"

Isabelle Output

37 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License




jEdit/PIDE IDATA @

[:XsXs} week01A_demo.thy

File Edit Search Markers Folding View Utilities Macros Plugins Help

O week01A_demo.thy (~/teaching/compd 161/1252/slides/ week01A/) 4]
N a
Bl text {*

constants (eg Suc) are displayed differently. *}

Note that free variables (eg x), bound variables (eg An) and<( LaTeX Comment

term "x*

tern " x*
term "Succ x"
"Suc x = Succ y*

4
=
o
°
3

constant.

logic terms go in
text {* e e types insi quotes:“x + 2”

~ |dectare [[show_types]]
> |term "Suc x = Succ y"

text {* To switch off again: *}
~ |dectare [[show types=false]]
¥ |term "Suc x = Succ y"

~ |text {* @ and + are overloaded: *}

nron *n 4 = An
[100%  ~] (] Tracing & Auto update | Update

"Suc x'
.. "pat"

38 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License




jEdit/PIDE IDATA @

eo0o weekDIA demo.thy

File Edit Search Markers Folding View Utiliies Macros Plugins _Help

O week0LA_demo.thy (~/teaching/comp4161/ 1252 slides/ weekO1A/) i

. o

Bl text {* -
Note that free variables (eg x), bound variables (eg An) and é
constants (eg Suc) are displayed differently. *} g

term "x*
term *sflc x*
term "Succ x"

¥ [term "X

Command click
pes inside terms: *} jumps to deﬁnition

constant "Nat.Suc*
it nat = nat
text {*
~ |declare [[show_types]]
> |term "Suc x = Succ y"

text {* To switch off again: *}
~ |dectare [[show types=false]]

> |term "Suc x = Succ y"

Command + hover
for popup info

~ |text {* @ and + are overloaded: *}

nron *n 4+ n = A"

[100%  ~] (] Tracing & Auto update | Update

"Suc x'
.. "pat"

39 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License



jEdit/PIDE IDATA @

eo0o KOLA demo.thy

File Edit Search Markers Folding View Utiliies Macros Plugins _Help

O week0LA_demo.thy (~/teaching/comp4161/ 1252 slides/ weekO1A/) i

. o

Bl text {* -
Note that free variables (eg x), bound varial %
constants (eg Suc) are displayed differentl g

processed
term "x*

term "Sflc x"

term "Succ x"

term "Suc x = Succ y"

> |term

text
~ |dectare [[show types]]
* |term "Suc x = Succ y"

e types inside terms: *}

text {* To switch off again: *}
~ |dectare [[show_types=false]]

~ [term "Suc x = Succ y" unPrOcessed

~ |text {* @ and + are overloaded: *}

nron "n 4+ n = A"

[100%  ~] (] Tracing & Auto update | Update

"Suc x'
.. "pat"

40 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License




| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\



Exercises DATA
@

=>» Download and install Isabelle from

http://mirror.cse.unsw.edu.au/pub/isabelle/

Step through the demo files from the lecture web page

Write your own theory file, look at some theorems in the library, try

'find_theorems’

=» How many theorems can help you if you need to prove something
containing the term “Suc(Suc x)"?

=» What is the name of the theorem for associativity of addition of natural
numbers in the library?

i

42 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License


http://mirror.cse.unsw.edu.au/pub/isabelle/

