

June Andronick, Christine Rizkallah, Miki Tanaka, Johannes Åman Pohjola T3/2019

CSIRO

Last time...

- **→** Simply typed lambda calculus: λ^{\rightarrow}
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- \rightarrow β -reduction in λ^{\rightarrow} satisfies subject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates
- → Types and terms in Isabelle

Content

→ Intro & motivation, getting started

→ Foundations & Principles

 Lambda Calculus, natural deduction [1,2]

 Higher Order Logic, Isar (part 1) [4]

Term rewriting

→ Proof & Specification Techniques

 Inductively defined sets, rule induction [5] $[6, 7^b]$

Datatypes, recursion, induction, Isar (part 2)

 Hoare logic, proofs about programs, invariants [8]

C verification

[9]

Practice, questions, exam prep

 $[10^{c}]$

^aa1 due; ^ba2 due; ^ca3 due

Proofs in Isabelle

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
...
done
```

→ Sequential application of methods until all **subgoals** are solved.

The Proof State

1.
$$\bigwedge x_1 \dots x_p \cdot \llbracket A_1; \dots; A_n \rrbracket \Longrightarrow B$$

2. $\bigwedge y_1 \dots y_q \cdot \llbracket C_1; \dots; C_m \rrbracket \Longrightarrow D$

$$x_1 \dots x_p$$
 Parameters $A_1 \dots A_n$ Local assumptions

Actual (sub)goal

Isabelle Theories

Syntax:

```
theory MyTh imports ImpTh_1 \dots ImpTh_n begin (declarations, definitions, theorems, proofs, ...)* end
```

- → *MyTh*: name of theory. Must live in file *MyTh*.thy
- → *ImpTh_i*: name of *imported* theories. Import transitive.

Unless you need something special: theory *MyTh* imports Main begin ... end

Natural Deduction Rules

$$\frac{A \quad B}{A \land B} \text{ conjI} \qquad \frac{A \land B \quad \llbracket A; B \rrbracket \implies C}{C} \text{ conjE}$$

$$\frac{A}{A \lor B} \quad \frac{B}{A \lor B} \text{ disjI1/2} \qquad \frac{A \lor B \quad A \implies C \quad B \implies C}{C} \text{ disjE}$$

$$\frac{A \implies B}{A \implies B} \text{ impl} \qquad \frac{A \longrightarrow B \quad A \quad B \implies C}{C} \text{ impE}$$

For each connective $(\land, \lor, \text{ etc})$: introduction and elimination rules

Proof by assumption

apply assumption

proves

1.
$$\llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow C$$

by unifying C with one of the B_i

There may be more than one matching B_i and multiple unifiers.

Backtracking!

Explicit backtracking command: back

Intro rules

Intro rules decompose formulae to the right of \Longrightarrow .

Intro rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

→ To prove A it suffices to show $A_1 \dots A_n$

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- \rightarrow unify A and C
- \rightarrow replace C with n new subgoals $A_1 \dots A_n$

Elim rules

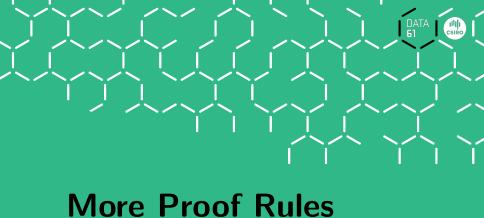
Elim rules decompose formulae on the left of \Longrightarrow .

Elim rule
$$[\![A_1;\ldots;A_n]\!] \Longrightarrow A$$
 means

 \rightarrow If I know A_1 and want to prove A it suffices to show $A_2 \dots A_n$

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- eliminates that assumption



Iff, Negation, True and False

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \quad \text{iffl} \qquad \frac{A = B \quad \llbracket A \longrightarrow B; B \longrightarrow A \rrbracket \Longrightarrow C}{C} \quad \text{iffE}$$

$$\frac{A = B}{A \Longrightarrow B} \quad \text{iffD1} \qquad \qquad \frac{A = B}{B \Longrightarrow A} \quad \text{iffD2}$$

$$\frac{A \Longrightarrow False}{\neg A} \quad \text{notI} \qquad \qquad \frac{\neg A \quad A}{P} \quad \text{notE}$$

$$\frac{False}{P} \quad \text{FalseE}$$

Equality

$$\frac{s=t}{t=t}$$
 refl $\frac{s=t}{t=s}$ sym $\frac{r=s}{r=t}$ trans

$$\frac{s=t \quad P \ s}{P \ t}$$
 subst

Rarely needed explicitly — used implicitly by term rewriting

Classical

$$\overline{P = \textit{True} \lor P = \textit{False}} \quad \text{True-or-False}$$

$$\overline{P \lor \neg P} \quad \text{excluded-middle}$$

$$\frac{\neg A \Longrightarrow \textit{False}}{\Delta} \quad \text{ccontr} \qquad \frac{\neg A \Longrightarrow A}{\Delta} \quad \text{classical}$$

- → excluded-middle, ccontr and classical not derivable from the other rules.
- → if we include True-or-False, they are derivable

They make the logic "classical", "non-constructive"

Cases

$$\overline{P \vee \neg P}$$
 excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

Safe and not so safe

Safe rules preserve provability conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE

$$\frac{A}{A \wedge B}$$
 conjl

Unsafe rules can turn a provable goal into an unprovable one disjl1, disjl2, impE, iffD1, iffD2, notE

$$\frac{A}{A \vee B}$$
 disjl1

Apply safe rules before unsafe ones

What we have learned so far...

- \rightarrow natural deduction rules for \land , \lor , \longrightarrow , \neg , iff...
- → proof by assumption, by intro rule, elim rule
- → safe and unsafe rules
- → indent your proofs! (one space per subgoal)
- → prefer implicit backtracking (chaining) or *rule_tac*, instead of *back*
- → prefer and defer
- → oops and sorry

Assignment

Assignment 1 will be out on Monday, the 30rd of September!

Reminder: DO NOT COPY

- → Assignments and exams are take-home. This does NOT mean you can work in groups. Each submission is personal.
- → For more info, see Plagiarism Policy