| | | |
N NS SN\

S\ /\/ﬁ/ﬁ/w W
\/ ~ NS N NN

S I
COMP4161: Advanced Topics in Software Verification
P N NS

7~ 7

based on slides by J. Blanchette, L. Bulwahn and T. I I
ipko . .o . A .
Tu%e %ndromck, Christine Rizkallah, Miki Tanaka, Johannes Man\PohJola

T3/2019
databl.csiro.au %

Content D a7
I %

=» Intro & motivation, getting started

=» Foundations & Principles

e Lambda Calculus, natural deduction [1,2]
e Higher Order Logic, Isar (part 1) [37]
e Term rewriting [4]

=» Proof & Specification Techniques

e Inductively defined sets, rule induction [5]
o Datatypes, recursion, induction, Isar (part 2) [6, 7°]
e Hoare logic, proofs about programs, invariants [8]
o C verification [9]
o Practice, questions, exam prep [10°]

23l due; Pa2 due; a3 due

2 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Overview DATA | P

Automatic Proof and Disproof

=» Sledgehammer: automatic proofs
=>» Quickcheck: counter example by testing
=>» Nipick: counter example by SAT

Based on slides by Jasmin Blanchette, Lukas Bulwahn, and Tobias
Nipkow (TUM).

3 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Automation I{ATA D
b1
~N~-

Dramatic improvements in fully automated proofs in the last 2
decades.

=» First-order logic (ATP): Otter, Vampire, E, SPASS
=» Propositional logic (SAT): MiniSAT, Chaff, RSat
=» SAT modulo theory (SMT): CVC3, Yices, Z3

The key:

Efficient reasoning engines, and restricted logics.

4 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Automation in Isabelle DATAI®

1980s rule applications, write ML code

1990s simplifier, automatic provers (blast, auto),
arithmetic

2000s embrace external tools, but don't trust
them (ATP/SMT/SAT)

5 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Sledgehammer DATA | P

Sledgehammer:

=» Connects Isabelle with ATPs and SMT solvers:
E, SPASS, Vampire, CVC3, Yices, Z3

=» Simple invocation:
=» Users don't need to select or know facts
=» or ensure the problem is first-order
=» or know anything about the automated prover

=» Exploits local parallelism and remote servers

6 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

Sledgehammer Architecture DATA | @

(Sledgehammer)
! !

‘ Relevance filter | Relevance filter

SPASS jjVampire

P a q Metis Metis Metis
M;t :)sf Mre:;sf M::")sf or SMT or SMT or SMT
P P P proof proof proof

8 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Fact Selection DATA
@

Provers perform poorly if given 1000s of facts.

=» Best number of facts depends on the prover

=» Need to take care which facts we give them

=» Idea: order facts by relevance, give top n to prover

(n = 250,1000,...)

Meng & Paulson method: lightweight, symbol-based filter
Machine learning method:

look at previous proofs to get a probability of relevance

4 4

9 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

From HOL to FOL DATAI®

Source: higher-order, polymorphism, type classes
Target: first-order, untyped or simply-typed

=» First-order:
=» SK combinators, A-lifting
=» Explicit function application operator

=» Encode types:
=» Monomorphise (generate multiple instances), or
=» Encode polymorphism on term level

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Reconstruction DATA | %

We don’t want to trust the external provers.
Need to check/reconstruct proof.

=» Re-find using Metis
Usually fast and reliable (sometimes too slow)

=» Rerun external prover for trusted replay
Used for SMT. Re-runs prover each time!

=» Recheck stored explicit external representation of proof
Used for SMT, no need to re-run. Fragile.

=» Recast into structured Isar proof
Fast, not always readable.

11 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Judgement Day (up to 2013) | ATAI@
b1

Evaluating Sledgehammer:

=» 1240 goals out of 7 existing theories.
=» How many can sledgehammer solve?

=» 2010: E, SPASS, Vampire (for 5-120s). 46%
ESV x5bs~ V x 120s

=» 2011: Add E-SInE, CVC2, Yices, Z3 (30s).
3>V

=» 2012: Better integration with SPASS. 64%
SPASS best (small margin)

=» 2013: Machine learning for fact selection. 69%
Improves a few percent across provers.

12 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Evaluation D oA
@

2010
3 ATPs x 30s

46%

13 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Evaluation D oA
@

2010
3 ATPs x 30s 3ATPsx30s
nontrivial goals
0,
46% 4%

14 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Evaluation DATA
@

2010
3 ATPs x 30s 3ATPsx30s
nontrivial goals
46% 4%
2012

(4 ATPs + 3 SMTs) x 30s (4 ATPs + 3 SMTs) x 30s
nontrivial goals

64% 0%

15 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attributi

Judgement Day (2016) DATA | @

Prover MePo MaSh MeSh Any selector
CVC4 1.5pre 679 749 783 830
E1.8 622 601 665 726
SPASS 3.8ds 678 684 739 789
Vampire 3.0 703 698 740 789
veriT 2014post 543 556 590 655
73 4.3.2pre 638 668 703 788
Any prover 801 885 919 943

Fig. 15 Number of successful Sledgehammer invocations per prover on 1230 Judgment Day goals

919/1230 = 74%

16 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Sledgehammer rules! DATA | @

Example application:

=>» Large Isabelle/HOL repository of algebras for modelling
imperative programs
(Kleene Algebra, Hoare logic, ..., ~ 1000 lemmas)

=>» Intricate refinement and termination theorems

=» Sledgehammer and Z3 automate algebraic proofs at
textbook level.

"The integration of ATP, SMT, and Nitpick is
for our purposes very very helpful.” — G. Struth

17 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

Theorem proving and testing DATA | %

Testing can show only the presence of errors,
but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute
conjectures!

Sad facts of life:
=» Most lemma statements are wrong the first time.
=» Theorem proving is expensive as a debugging technique.

Find counter examples automatically!

19 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Quickcheck DATA | P

Lightweight validation by testing.

=» Motivated by Haskell’s QuickCheck
=» Uses Isabelle’s code generator
=» Fast

=* Runs in background, proves you wrong as you type.

20 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Quickcheck DATA | P

Covers a number of testing approaches:

=» Random and exhausting testing.
=» Smart test data generators.
=> Narrowing-based (symbolic) testing.

Creates test data generators automatically.

21 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

Test generators for datatypes DATA | @

Fast iteration in continuation-passing-style

datatype « list = Nil | Cons « (« list)

Test function:

testy ise P = P Nil andalso test, (Ax. test, jist (Axs. P (Cons x

xs)))

23 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Test generators for predicates DATA | @

distinct xs = distinct (removel x xs)

Problem:
Exhaustive testing creates many useless test cases.

Solution:
Use definitions in precondition for smarter generator.
Only generate cases where distinct xs is true.

test-distinct,, s+ P = P Nil andalso
test, (Ax. test-distinct, jist (if x ¢ xs then (Axs. P (Cons
x xs)) else True))

Use data flow analysis to figure out which variables
must be computed and which generated.

24 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Narrowing DATA | @

Symbolic execution with demand-driven refinement
=» Test cases can contain variables

=» [f execution cannot proceed: instantiate with further
symbolic terms

Pays off if large search spaces can be discarded:
distinct (Cons 1 (Cons 1 x))

False for any x, no further instantiations for x necessary.

Implementation:
Lazy execution with outer refinement loop.
Many re-computations, but fast.

25 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Quickcheck Limitations DATA | %

Only executable specifications!

=» No equality on functions with infinite domain

=» No axiomatic specifications

26 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

Nitpick EIATA | %

Finite model finder

=» Based on SAT via Kodkod (backend of Alloy prover)
=» Soundly approximates infinite types

28 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Nitpick Successes DATA
@

=» Algebraic methods
=*» C++ memory model
=» Found soundness bugs in TPS and LEO-II

Fan mail:
"Last night | got stuck on a goal | was sure was a
theorem. After 5-10 minutes | gave Nitpick a try, and
within a few secs it had found a splendid
counterexample—despite the mess of locales and type
classes in the context!”

29 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

We have seen today ... DATA | %

=>» Proof: Sledgehammer
=» Counter examples: Quickcheck
=» Counter examples: Nitpick

31 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

(Part 2)

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

Datatype case distinction DATA | @

proof (cases term)
case Constructor;

next
next
case (Constructory X)

e X e

qed

case (Constructor; X) =
fix X assume Constructor; : " term = Constructor; X"

34 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Structural induction for nat DATA | %

show P n
proof (induct n)
case 0 = let ?case = PO

show 7case
next
case (Suc n) = fix n assume Suc: P n
let ?case = P (Suc n)

. n P
show ?case
qed

35 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Structural induction: = and A {ATAI%

show "Ax. An= P n"
proof (induct n)
case 0 = fix x assume 0: "A 0"
let 7case =" P Q"

show ?case
next
case (Suc n) = fix nand x
assume Suc: "Ax. An= P n"
cn o "A (Suc n)”
let ?case =" P (Suc n)"
show ?case
ged

36 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

The Goal DATA | P

Prove:
x-x"1=1 using: assoc: (X) =X (y . Z)
leftinv: x1.-x=1
leftone: 1-x=

39 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

The Goal

IIIATA | %

Prove:
x-xt=1-(x-x71) assoc: (x_-ly)-zzx.(y.z)

=1.x-x"1 leftiinv: x " -x=1
=(x 1. x1.x.x1 left_one: 1-x=x
= X_1 -1, (X_l . X) . X—l
= X_l -1, 1- X_l
— X71 —1 (1 Xil)
= X_l 1 . X—l
=1

Can we do this in Isabelle?

=» Simplifier: too eager
=» Manual: difficult in apply style
=» lIsar: with the methods we know, too verbose

40 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Chains of equations DATA
@

The Problem

a = b
= c
.o = d
shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)
Solution in lIsar:
=» Keywords also and finally to delimit steps

=» ...: predefined schematic term variable,
refers to right hand side of last expression

=» Automatic use of transitivity rules to connect steps

41 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

also/finally
| IIIATA | %

have "ty = t;" [proof] caIcuIatlon register
also "to=t1"

have "... = t," [proof]

also "to =t

also "to = th_1"

have "--- =t," [proof]

finally ty = tp

show P

— 'finally’ pipes fact "tg = t," into the proof

42 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

More about also DATA
@

=»> Works for all combinations of =, < and <.
=>» Uses all rules declared as [trans].
=» To view all combinations: print_trans_rules

43 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Designing [trans] Rules | Tata | @

have ="hL ® " [proof]
also

have "...® r" [proof]
also

Anatomy of a [trans] rule:
=» Usual form: plain transitivity [© n;n O n] = h o n
=» More general form: [P hn;Qn mAl= Chn

Examples:

pure transitivity: [a=b;b=c] = a=c¢
mixed: [a< bb<c]=a<c
substitution: [P a;a=b] = P b
antisymmetry: [a < b; b < a] = False

monotonicity:
[a=fbb<cAxy x<y=fx<fy]l]=a<fc

44 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

¢

-
-
-
-

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

