

COMP4161: Advanced Topics in Software Verification

based on slides by J. Blanchette, L. Bulwahn and T.

Nipkow June Andronick, Christine Rizkallah, Miki Tanaka, Johannes Åman Pohjola T3/2019

CSIRO

Content

→ Intro & motivation, getting started

→ Foundations & Principles

 Lambda Calculus, natural deduction [1,2]Higher Order Logic, Isar (part 1)

[4]

Term rewriting

→ Proof & Specification Techniques

 Inductively defined sets, rule induction [5] $[6, 7^b]$

Datatypes, recursion, induction, Isar (part 2)

 Hoare logic, proofs about programs, invariants [8]

C verification

[9]

Practice, questions, exam prep

 $[10^{c}]$

^aa1 due; ^ba2 due; ^ca3 due

Overview

Automatic Proof and Disproof

→ Sledgehammer: automatic proofs

→ Quickcheck: counter example by testing

→ Nipick: counter example by SAT

Based on slides by Jasmin Blanchette, Lukas Bulwahn, and Tobias Nipkow (TUM).

Automation

Dramatic improvements in fully automated proofs in the last 2 decades.

- → First-order logic (ATP): Otter, Vampire, E, SPASS
- → Propositional logic (SAT): MiniSAT, Chaff, RSat
- → SAT modulo theory (SMT): CVC3, Yices, Z3

The key:

Efficient reasoning engines, and restricted logics.

Automation in Isabelle

- 1980s rule applications, write ML code
- 1990s simplifier, automatic provers (blast, auto), arithmetic
- 2000s embrace external tools, but don't trust them (ATP/SMT/SAT)

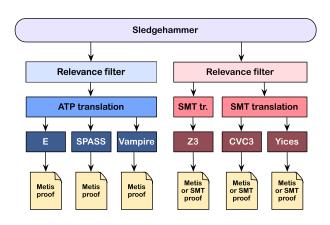
Sledgehammer

Sledgehammer:

- → Connects Isabelle with ATPs and SMT solvers: E, SPASS, Vampire, CVC3, Yices, Z3
- → Simple invocation:
 - → Users don't need to select or know facts
 - → or ensure the problem is first-order
 - → or know anything about the automated prover
- → Exploits local parallelism and remote servers

Demo: Sledgehammer

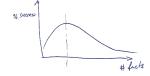
Sledgehammer Architecture



Fact Selection

Provers perform poorly if given 1000s of facts.

- → Best number of facts depends on the prover
- → Need to take care which facts we give them
- → Idea: order facts by relevance, give top n to prover (n = 250, 1000, ...)
- → Meng & Paulson method: lightweight, symbol-based filter
- → Machine learning method: look at previous proofs to get a probability of relevance



From HOL to FOL

Source: higher-order, polymorphism, type classes

Target: first-order, untyped or simply-typed

→ First-order:

- \rightarrow SK combinators, λ -lifting
- → Explicit function application operator

→ Encode types:

- → Monomorphise (generate multiple instances), or
- → Encode polymorphism on term level

Reconstruction

We don't want to trust the external provers.

Need to check/reconstruct proof.

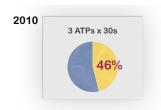
- → Re-find using Metis
 Usually fast and reliable (sometimes too slow)
- → Rerun external prover for trusted replay Used for SMT. Re-runs prover each time!
- → Recheck stored explicit external representation of proof Used for SMT, no need to re-run. Fragile.
- → Recast into structured Isar proof Fast, not always readable.

Judgement Day (up to 2013)

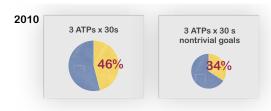
Evaluating Sledgehammer:

- → 1240 goals out of 7 existing theories.
- → How many can sledgehammer solve?
- → 2010: E, SPASS, Vampire (for 5-120s). 46% $ESV \times 5s \approx V \times 120s$
- → **2011**: Add E-SInE, CVC2, Yices, Z3 (30s). Z3 > V
- → 2012: Better integration with SPASS. 64% SPASS best (small margin)
- → 2013: Machine learning for fact selection. 69% Improves a few percent across provers.

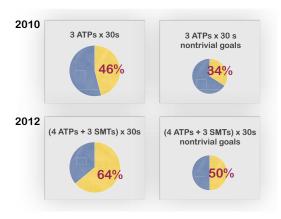
Evaluation



Evaluation



Evaluation



Judgement Day (2016)

Prover	MePo	MaSh	MeSh	Any selector
CVC4 1.5pre	679	749	783	830
E 1.8	622	601	665	726
SPASS 3.8ds	678	684	739	789
Vampire 3.0	703	698	740	789
veriT 2014post	543	556	590	655
Z3 4.3.2pre	638	668	703	788
Any prover	801	885	919	943

Fig. 15 Number of successful Sledgehammer invocations per prover on 1230 Judgment Day goals

$$919/1230 = 74\%$$

Sledgehammer rules!

Example application:

- → Large Isabelle/HOL repository of algebras for modelling imperative programs (Kleene Algebra, Hoare logic, ..., ≈ 1000 lemmas)
- → Intricate refinement and termination theorems
- → Sledgehammer and Z3 automate algebraic proofs at textbook level.

"The integration of ATP, SMT, and Nitpick is for our purposes very very helpful." – G. Struth

Theorem proving and testing

Testing can show only the presence of errors, but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute conjectures!

Sad facts of life:

- → Most lemma statements are wrong the first time.
- → Theorem proving is expensive as a debugging technique.

Find counter examples automatically!

Quickcheck

Lightweight validation by testing.

- → Motivated by Haskell's QuickCheck
- → Uses Isabelle's code generator
- → Fast
- → Runs in background, proves you wrong as you type.

Quickcheck

Covers a number of testing approaches:

- → Random and exhausting testing.
- → Smart test data generators.
- → Narrowing-based (symbolic) testing.

Creates test data generators automatically.

Test generators for datatypes

Fast iteration in continuation-passing-style

datatype
$$\alpha$$
 list = Nil | Cons α (α list)

Test function:

$$\mathsf{test}_{\alpha\ \mathit{list}}\ \mathsf{P}\ =\ \mathsf{P}\ \mathsf{Nil}\ \mathit{andalso}\ \mathsf{test}_{\alpha}\ (\lambda \mathsf{x}.\ \mathsf{test}_{\alpha\ \mathit{list}}\ (\lambda \mathsf{xs.}\ \mathsf{P}\ (\mathsf{Cons}\ \mathsf{x}\ \mathsf{xs})))$$

Test generators for predicates

distinct $xs \implies distinct (remove1 \times xs)$

Problem:

Exhaustive testing creates many useless test cases.

Solution:

Use definitions in precondition for smarter generator. Only generate cases where distinct xs is true.

test- $distinct_{\alpha}$ list P = P Nil and also $test_{\alpha}$ $(\lambda x. test$ - $distinct_{\alpha}$ list $(if x \notin xs then (\lambda xs. P (Cons x xs))$ else True))

Use data flow analysis to figure out which variables must be computed and which generated.

Narrowing

Symbolic execution with demand-driven refinement

- → Test cases can contain variables
- → If execution cannot proceed: instantiate with further symbolic terms

Pays off if large search spaces can be discarded:

distinct (Cons 1 (Cons 1 x))

False for any x, no further instantiations for x necessary.

Implementation:

Lazy execution with outer refinement loop. Many re-computations, but fast.

Quickcheck Limitations

Only executable specifications!

- → No equality on functions with infinite domain
- → No axiomatic specifications

Nitpick

Finite model finder

- → Based on SAT via Kodkod (backend of Alloy prover)
- → Soundly approximates infinite types

Nitpick Successes

- → Algebraic methods
- → C++ memory model
- → Found soundness bugs in TPS and LEO-II

Fan mail:

"Last night I got stuck on a goal I was sure was a theorem. After 5–10 minutes I gave Nitpick a try, and within a few secs it had found a splendid counterexample—despite the mess of locales and type classes in the context!"

We have seen today ...

→ Proof: Sledgehammer

→ Counter examples: Quickcheck

→ Counter examples: Nitpick

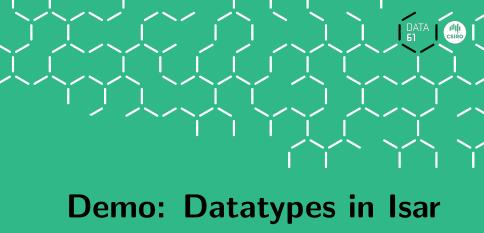
Datatype case distinction


```
proof (cases term)
   case Constructor<sub>1</sub>
next
next
   case (Constructor<sub>k</sub> \vec{x})
   \vec{x} ...
ged
       case (Constructor, \vec{x}) \equiv
       fix \vec{x} assume Constructor<sub>i</sub>: "term = Constructor<sub>i</sub> \vec{x}"
```

Structural induction for nat


```
show P n
proof (induct n)
                     \equiv let ?case = P 0
  case 0
  show ?case
next
  case (Suc n) \equiv fix n assume Suc: P n
                         let ?case = P (Suc n)
  \cdots n \cdots
  show ?case
qed
```

Structural induction: \Longrightarrow and \bigwedge



The Goal

Prove: $x \cdot x^{-1} = 1$ assoc: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ using:

left_inv: $x^{-1} \cdot x = 1$ left_one: $1 \cdot x = x$

The Goal

Prove:

$$\begin{array}{lll} x \cdot x^{-1} &= 1 \cdot (x \cdot x^{-1}) & \text{assoc:} & (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ \dots &= 1 \cdot x \cdot x^{-1} & \text{left_inv:} & x^{-1} \cdot x = 1 \\ \dots &= (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} & \text{left_one:} & 1 \cdot x = x \\ \dots &= (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1} & \\ \dots &= (x^{-1})^{-1} \cdot 1 \cdot x^{-1} & \\ \dots &= (x^{-1})^{-1} \cdot (1 \cdot x^{-1}) & \\ \dots &= (x^{-1})^{-1} \cdot x^{-1} & \\ \dots &= 1 & \end{array}$$

Can we do this in Isabelle?

→ Simplifier: too eager

→ Manual: difficult in apply style

→ Isar: with the methods we know, too verbose

Chains of equations

The Problem

Each step usually nontrivial (requires own subproof) **Solution in Isar:**

- → Keywords **also** and **finally** to delimit steps
- → ...: predefined schematic term variable, refers to right hand side of last expression
- → Automatic use of transitivity rules to connect steps

also/finally


```
have "t_0 = t_1" [proof]
also
have "... = t_2" [proof]
also
also
have "\cdots = t_n" [proof]
finally
show P
— 'finally' pipes fact "t_0 = t_n" into the proof
```

```
calculation register "t_0 = t_1" "t_0 = t_2" \vdots "t_0 = t_{n-1}" t_0 = t_n
```

More about also

- \rightarrow Works for all combinations of =, \leq and <.
- → Uses all rules declared as [trans].
- → To view all combinations: print_trans_rules

Designing [trans] Rules

have = "
$$I_1 \odot r_1$$
" [proof] also have "... $\odot r_2$ " [proof] also

Anatomy of a [trans] rule:

- ightharpoonup Usual form: plain transitivity $\llbracket l_1 \odot r_1; r_1 \odot r_2 \rrbracket \Longrightarrow l_1 \odot r_2$
- ightharpoonup More general form: $\llbracket P \ l_1 \ r_1; Q \ r_1 \ r_2; A \rrbracket \Longrightarrow C \ l_1 \ r_2$

Examples:

- → pure transitivity: $[a = b; b = c] \implies a = c$
- \rightarrow mixed: $\llbracket a \leq b; b < c \rrbracket \Longrightarrow a < c$
- \rightarrow substitution: $\llbracket P \ a; a = b \rrbracket \Longrightarrow P \ b$
- \rightarrow antisymmetry: $[a < b; b < a] \Longrightarrow False$
- → monotonicity:

$$\llbracket a = f \ b; b < c; \land x \ y. \ x < y \Longrightarrow f \ x < f \ y \rrbracket \Longrightarrow a < f \ c$$

