COMP4161: Advanced Topics in Software Verification

# fun

DATA

June Andronick, Christine Rizkallah, Miki Tanaka, Johannes Åman Pohjola T3/2019



data61.csiro.au

### Content

| ontent                                                             |                      |
|--------------------------------------------------------------------|----------------------|
| → Intro & motivation, getting started                              | [1]                  |
| ➔ Foundations & Principles                                         |                      |
| <ul> <li>Lambda Calculus, natural deduction</li> </ul>             | [1,2]                |
| <ul> <li>Higher Order Logic, Isar (part 1)</li> </ul>              | [3ª]                 |
| Term rewriting                                                     | [4]                  |
| ➔ Proof & Specification Techniques                                 |                      |
| <ul> <li>Inductively defined sets, rule induction</li> </ul>       | [5]                  |
| <ul> <li>Datatypes, recursion, induction, Isar (part 2)</li> </ul> | [6, 7 <sup>b</sup> ] |
| <ul> <li>Hoare logic, proofs about programs, invariants</li> </ul> | [8]                  |
| C verification                                                     | [9]                  |
| <ul> <li>Practice, questions, exam prep</li> </ul>                 | [10 <sup>c</sup> ]   |
|                                                                    |                      |

### **General Recursion**



The Choice

### **General Recursion**



#### The Choice

- → Limited expressiveness, automatic termination
  - primrec
- High expressiveness, termination proof may fail
   fun
- High expressiveness, tweakable, termination proof manual
   function

### fun — examples



fun sep :: "'a  $\Rightarrow$  'a list  $\Rightarrow$  'a list" where "sep a (x # y # zs) = x # a # sep a (y # zs)" | "sep a xs = xs"

### fun — examples



fun sep :: "'a  $\Rightarrow$  'a list  $\Rightarrow$  'a list" where "sep a (x # y # zs) = x # a # sep a (y # zs)" | "sep a xs = xs" fun ack :: "nat  $\Rightarrow$  nat  $\Rightarrow$  nat" where "ack 0 n = Suc n" |

### fun



- → More permissive than **primrec**:
  - pattern matching in all parameters
  - nested, linear constructor patterns
  - reads equations sequentially like in Haskell (top to bottom)
  - proves termination automatically in many cases (tries lexicographic order)

### fun



- → More permissive than **primrec**:
  - pattern matching in all parameters
  - nested, linear constructor patterns
  - reads equations sequentially like in Haskell (top to bottom)
  - proves termination automatically in many cases (tries lexicographic order)
- → Generates more theorems than **primrec**

### fun



- → More permissive than **primrec**:
  - pattern matching in all parameters
  - nested, linear constructor patterns
  - reads equations sequentially like in Haskell (top to bottom)
  - proves termination automatically in many cases (tries lexicographic order)
- → Generates more theorems than **primrec**
- ➔ May fail to prove termination:
  - use function (sequential) instead
  - allows you to prove termination manually

### fun — induction principle



→ Each fun definition induces an induction principle

### fun — induction principle



- → Each fun definition induces an induction principle
- ➔ For each equation:

show P holds for Ihs, provided P holds for each recursive call on rhs

### fun — induction principle



- → Each fun definition induces an induction principle
- ➔ For each equation:

show P holds for lhs, provided P holds for each recursive call on rhs

→ Example sep.induct:

$$\begin{bmatrix} \land a. P a []; \\ \land a w. P a [w] \\ \land a x y zs. P a (y \# zs) \Longrightarrow P a (x \# y \# zs); \\ \end{bmatrix} \Longrightarrow P a xs$$



#### Isabelle tries to prove termination automatically

→ For most functions this works with a lexicographic termination relation.



#### Isabelle tries to prove termination automatically

- → For most functions this works with a lexicographic termination relation.
- ➔ Sometimes not



#### Isabelle tries to prove termination automatically

- → For most functions this works with a lexicographic termination relation.
- → Sometimes not  $\Rightarrow$  error message with unsolved subgoal



#### Isabelle tries to prove termination automatically

- → For most functions this works with a lexicographic termination relation.
- → Sometimes not  $\Rightarrow$  error message with unsolved subgoal
- → You can prove termination separately.

#### function (sequential) quicksort where

quicksort [] = [] | quicksort (x # xs) = quicksort  $[y \leftarrow xs.y \le x]@[x]@$  quicksort  $[y \leftarrow xs.x < y]$ by pat\_completeness auto

#### termination

```
by (relation "measure length") (auto simp: less_Suc_eq_le)
```







Recall primrec:

→ defined one recursion operator per datatype D



- → defined one recursion operator per datatype D
- → inductive definition of its graph  $(x, f x) \in D_{-rel}$



- → defined one recursion operator per datatype D
- → inductive definition of its graph  $(x, f x) \in D_{-}rel$
- → prove totality:  $\forall x. \exists y. (x, y) \in D_rel$



- → defined one recursion operator per datatype D
- → inductive definition of its graph  $(x, f x) \in D_rel$
- → prove totality:  $\forall x. \exists y. (x, y) \in D_rel$
- → prove uniqueness:  $(x, y) \in D\_rel \Rightarrow (x, z) \in D\_rel \Rightarrow y = z$



- → defined one recursion operator per datatype D
- → inductive definition of its graph  $(x, f x) \in D_rel$
- → prove totality:  $\forall x. \exists y. (x, y) \in D_rel$
- → prove uniqueness:  $(x, y) \in D\_rel \Rightarrow (x, z) \in D\_rel \Rightarrow y = z$
- → recursion operator for datatype  $D_{-rec}$ , defined via THE.



- → defined one recursion operator per datatype D
- → inductive definition of its graph  $(x, f x) \in D_{-rel}$
- → prove totality:  $\forall x. \exists y. (x, y) \in D_rel$
- → prove uniqueness:  $(x, y) \in D\_rel \Rightarrow (x, z) \in D\_rel \Rightarrow y = z$
- → recursion operator for datatype  $D_{-}rec$ , defined via THE.
- → primrec: apply datatype recursion operator



Similar strategy for fun:

- $\rightarrow$  a new inductive definition for each fun f
- $\rightarrow$  extract *recursion scheme* for equations in *f*
- → define graph  $f_{-rel}$  inductively, encoding recursion scheme
- ➔ prove totality (= termination)
- ➔ prove uniqueness (automatic)
- → derive original equations from  $f_rel$
- → export induction scheme from  $f_rel$



function can separate and defer termination proof:

→ skip proof of totality



function can separate and defer termination proof:

- → skip proof of totality
- → instead derive equations of the form:  $x \in f\_dom \Rightarrow f x = ...$
- → similarly, conditional induction principle



function can separate and defer termination proof:

- → skip proof of totality
- → instead derive equations of the form:  $x \in f\_dom \Rightarrow f x = ...$
- → similarly, conditional induction principle
- → f\_dom = acc f\_rel
- →  $acc = accessible part of f_rel$
- $\rightarrow$  the part that can be reached in finitely many steps



function can separate and defer termination proof:

- → skip proof of totality
- → instead derive equations of the form:  $x \in f\_dom \Rightarrow f x = ...$
- → similarly, conditional induction principle
- → f\_dom = acc f\_rel
- →  $acc = accessible part of f_rel$
- $\rightarrow$  the part that can be reached in finitely many steps
- → termination =  $\forall x. x \in f\_dom$
- $\rightarrow$  still have conditional equations for partial functions



#### **termination fun\_name** sets up termination goal $\forall x. x \in fun\_name\_dom$

Three main proof methods:



#### **termination fun\_name** sets up termination goal $\forall x. x \in fun\_name\_dom$

Three main proof methods:

→ lexicographic\_order (default tried by fun)



#### **termination fun\_name** sets up termination goal $\forall x. x \in fun\_name\_dom$

Three main proof methods:

- → lexicographic\_order (default tried by fun)
- → size\_change (automated translation to simpler size-change graph<sup>1</sup>)

<sup>1</sup>C.S. Lee, N.D. Jones, A.M. Ben-Amram, *The Size-change Principle for Program Termination*, POPL 2001.



#### **termination fun\_name** sets up termination goal $\forall x. x \in fun\_name\_dom$

Three main proof methods:

- → lexicographic\_order (default tried by fun)
- → size\_change (automated translation to simpler size-change graph<sup>1</sup>)
- → relation R (manual proof via well-founded relation)

<sup>1</sup>C.S. Lee, N.D. Jones, A.M. Ben-Amram, *The Size-change Principle for Program Termination*, POPL 2001.

### Well Founded Orders



#### Definition

 $<_r$  is well founded if well founded induction holds wf( $<_r$ )  $\equiv \forall P. (\forall x. (\forall y <_r x.P y) \longrightarrow P x) \longrightarrow (\forall x. P x)$ 

### Well Founded Orders



#### Definition

 $<_r$  is well founded if well founded induction holds wf( $<_r$ )  $\equiv \forall P. (\forall x. (\forall y <_r x.P y) \longrightarrow P x) \longrightarrow (\forall x. P x)$ 

Well founded induction rule:

$$\frac{\mathsf{wf}(<_r) \quad \bigwedge x. \ (\forall y <_r x. \ P \ y) \Longrightarrow P \ x}{P \ a}$$

### Well Founded Orders



#### Definition

 $<_r$  is well founded if well founded induction holds wf( $<_r$ )  $\equiv \forall P. (\forall x. (\forall y <_r x.P y) \longrightarrow P x) \longrightarrow (\forall x. P x)$ 

Well founded induction rule:

$$\frac{\operatorname{wf}(<_r) \quad \bigwedge x. \ (\forall y <_r x. \ P \ y) \Longrightarrow P \ x}{P \ a}$$

Alternative definition (equivalent):

there are no infinite descending chains, or (equivalent): every nonempty set has a minimal element wrt  $<_r$ min ( $<_r$ )  $Q x \equiv \forall y \in Q. \ y \not<_r x$ wf ( $<_r$ )  $= (\forall Q \neq \{\}. \exists m \in Q. \min r Q m)$ 



 → < on N is well founded well founded induction = complete induction



- → < on N is well founded well founded induction = complete induction
- ightarrow > and  $\leq$  on  ${\mathbb N}$  are **not** well founded



- → < on N is well founded well founded induction = complete induction
- ightarrow > and  $\leq$  on  ${\mathbb N}$  are **not** well founded
- →  $x <_r y = x \text{ dvd } y \land x \neq 1$  on  $\mathbb{N}$  is well founded the minimal elements are the prime numbers



- → < on N is well founded well founded induction = complete induction
- ightarrow > and  $\leq$  on  ${\mathbb N}$  are **not** well founded
- →  $x <_r y = x \text{ dvd } y \land x \neq 1$  on  $\mathbb{N}$  is well founded the minimal elements are the prime numbers
- → (a, b) <<sub>r</sub> (x, y) = a <<sub>1</sub> x ∨ a = x ∧ b <<sub>2</sub> y is well founded if <<sub>1</sub> and <<sub>2</sub> are well founded



- → < on N is well founded well founded induction = complete induction
- ightarrow > and  $\leq$  on  ${\mathbb N}$  are **not** well founded
- →  $x <_r y = x \text{ dvd } y \land x \neq 1$  on  $\mathbb{N}$  is well founded the minimal elements are the prime numbers
- → (a, b) <<sub>r</sub> (x, y) = a <<sub>1</sub> x ∨ a = x ∧ b <<sub>2</sub> y is well founded if <<sub>1</sub> and <<sub>2</sub> are well founded
- →  $A <_r B = A \subset B \land$  finite *B* is well founded



- → < on N is well founded well founded induction = complete induction
- ightarrow > and  $\leq$  on  ${\mathbb N}$  are **not** well founded
- →  $x <_r y = x \text{ dvd } y \land x \neq 1$  on  $\mathbb{N}$  is well founded the minimal elements are the prime numbers
- → (a, b) <<sub>r</sub> (x, y) = a <<sub>1</sub> x ∨ a = x ∧ b <<sub>2</sub> y is well founded if <<sub>1</sub> and <<sub>2</sub> are well founded
- →  $A <_r B = A \subset B \land$  finite *B* is well founded
- $\clubsuit$   $\subseteq$  and  $\subset$  in general are **not** well founded

More about well founded relations: Term Rewriting and All That



So far for termination. What about the recursion scheme?



So far for termination. What about the recursion scheme? Not fixed anymore as in **primrec**.

Examples:

→ fun fib where fib 0 = 1 | fib (Suc 0) = 1 | fib (Suc (Suc n)) = fib n + fib (Suc n)



So far for termination. What about the recursion scheme? Not fixed anymore as in **primrec**.

Examples:

- → fun fib where
  - $\begin{array}{l} \mbox{fib } 0 = 1 \mid \\ \mbox{fib } (\mbox{Suc } 0) = 1 \mid \\ \mbox{fib } (\mbox{Suc } 0) = 1 \mid \\ \mbox{fib } (\mbox{Suc } (\mbox{Suc } n)) = \mbox{fib } n + \mbox{fib } (\mbox{Suc } n) \end{array}$

Recursion: Suc (Suc n)  $\rightsquigarrow$  n, Suc (Suc n)  $\rightsquigarrow$  Suc n



So far for termination. What about the recursion scheme? Not fixed anymore as in **primrec**.

Examples:

→ fun fib where fib 0 = 1 | fib (Suc 0) = 1 | fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n)  $\rightsquigarrow$  n, Suc (Suc n)  $\rightsquigarrow$  Suc n

→ fun f where f x = (if x = 0 then 0 else f (x - 1) \* 2)



So far for termination. What about the recursion scheme? Not fixed anymore as in **primrec**.

Examples:

→ fun fib where fib 0 = 1 | fib (Suc 0) = 1 | fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n)  $\rightsquigarrow$  n, Suc (Suc n)  $\rightsquigarrow$  Suc n

→ fun f where f x = (if x = 0 then 0 else f (x - 1) \* 2)

Recursion:  $x \neq 0 \Longrightarrow x \rightsquigarrow x - 1$ 



Higher Order:

→ datatype 'a tree = Leaf 'a | Branch 'a tree list

 $\begin{array}{l} \mbox{fun treemap}:: ('a \Rightarrow 'a) \Rightarrow 'a \mbox{ tree} \Rightarrow 'a \mbox{ tree where} \\ \mbox{treemap fn (Leaf n)} = \mbox{Leaf (fn n)} \mid \\ \mbox{treemap fn (Branch I)} = \mbox{Branch (map (treemap fn) I)} \end{array}$ 



Higher Order:

→ datatype 'a tree = Leaf 'a | Branch 'a tree list

 $\begin{array}{l} \mbox{fun treemap}:: ('a \Rightarrow 'a) \Rightarrow 'a \mbox{ tree} \Rightarrow 'a \mbox{ tree where} \\ \mbox{treemap fn (Leaf n)} = \mbox{Leaf (fn n)} \mid \\ \mbox{treemap fn (Branch I)} = \mbox{Branch (map (treemap fn) I)} \end{array}$ 

**Recursion**:  $x \in \text{set } I \implies (fn, Branch I) \rightsquigarrow (fn, x)$ 



Higher Order:

→ datatype 'a tree = Leaf 'a | Branch 'a tree list

 $\begin{array}{l} \mbox{fun treemap}:: ('a \Rightarrow 'a) \Rightarrow 'a \mbox{ tree} \Rightarrow 'a \mbox{ tree where} \\ \mbox{treemap fn (Leaf n)} = \mbox{Leaf (fn n)} \mid \\ \mbox{treemap fn (Branch I)} = \mbox{Branch (map (treemap fn) I)} \end{array}$ 

**Recursion**:  $x \in \text{set } I \implies (fn, Branch I) \rightsquigarrow (fn, x)$ 

How does Isabelle extract context information for the call?



Extracting context for equations



Extracting context for equations  $\Rightarrow$ Congruence Rules!



Extracting context for equations  $\Rightarrow$  Congruence Rules!

Recall rule if\_cong:

$$[| b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v |] \Longrightarrow$$
 (if b then x else y) = (if c then u else v)

**Read:** for transforming x, use b as context information, for y use  $\neg b$ .



Extracting context for equations  $\Rightarrow$  Congruence Rules!

Recall rule if\_cong:

$$[| b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v |] \Longrightarrow$$
  
(if b then x else y) = (if c then u else v)

**Read:** for transforming x, use b as context information, for y use  $\neg b$ . In fun\_def: for recursion in x, use b as context, for y use  $\neg b$ .

### Congruence Rules for fun\_defs



The same works for function definitions.

declare my\_rule[fundef\_cong]

### Congruence Rules for fun\_defs



The same works for function definitions.

**declare** my\_rule[fundef\_cong] (if\_cong already added by default)

Another example (higher-order): [| xs = ys;  $Ax. x \in set ys \implies f x = g x |] \implies map f xs = map g ys$ 

### Congruence Rules for fun\_defs



The same works for function definitions.

**declare** my\_rule[fundef\_cong] (if\_cong already added by default)

Another example (higher-order): [| xs = ys;  $Ax. x \in set ys \implies f x = g x$  |]  $\implies$  map f xs = map g ys

**Read:** for recursive calls in f, f is called with elements of xs



## Demo

### **Further Reading**



Alexander Krauss, Automating Recursive Definitions and Termination Proofs in Higher-Order Logic. PhD thesis, TU Munich, 2009.

https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf

### We have seen today ...



- → General recursion with fun/function
- ➔ Induction over recursive functions
- ➔ How fun works
- → Termination, partial functions, congruence rules