DATA 61

1

COMP4161: Advanced Topics in Software Verification

fun

June Andronick, Christine Rizkallah, Miki Tanaka, Johannes Åman Pohjola T3/2019

Content

\rightarrow Intro \& motivation, getting started
\rightarrow Foundations \& Principles

- Lambda Calculus, natural deduction
- Higher Order Logic, Isar (part 1)
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction, Isar (part 2)
- Hoare logic, proofs about programs, invariants
- C verification
- Practice, questions, exam prep

[^0]
General Recursion

The Choice

General Recursion

The Choice

\rightarrow Limited expressiveness, automatic termination

- primrec
\rightarrow High expressiveness, termination proof may fail
- fun
\rightarrow High expressiveness, tweakable, termination proof manual
- function

fun - examples

fun sep :: "'a \Rightarrow 'a list \Rightarrow 'a list" where
"sep a (x \# y \# zs) $=\mathrm{x} \# \mathrm{a} \#$ sep a ($\mathrm{y} \# \mathrm{zs}$)" |
"sep a xs = xs"

fun - examples

fun sep :: "'a \Rightarrow 'a list \Rightarrow 'a list"
where
"sep a (x \# y \# zs) = x \# a \# sep a (y \# zs)" |
"sep a xs = xs"
fun ack :: "nat \Rightarrow nat \Rightarrow nat" where
"ack $0 \mathrm{n}=$ Suc $\mathrm{n} " \mid$
"ack (Suc m) $0=$ ack m 1" |
"ack (Suc m) (Suc n) =ack m (ack (Suc m) n)"
\rightarrow More permissive than primrec:

- pattern matching in all parameters
- nested, linear constructor patterns
- reads equations sequentially like in Haskell (top to bottom)
- proves termination automatically in many cases (tries lexicographic order)
\rightarrow More permissive than primrec:
- pattern matching in all parameters
- nested, linear constructor patterns
- reads equations sequentially like in Haskell (top to bottom)
- proves termination automatically in many cases (tries lexicographic order)
\rightarrow Generates more theorems than primrec
\rightarrow More permissive than primrec:
- pattern matching in all parameters
- nested, linear constructor patterns
- reads equations sequentially like in Haskell (top to bottom)
- proves termination automatically in many cases (tries lexicographic order)
\rightarrow Generates more theorems than primrec
\rightarrow May fail to prove termination:
- use function (sequential) instead
- allows you to prove termination manually

fun - induction principle

\rightarrow Each fun definition induces an induction principle

fun - induction principle

\rightarrow Each fun definition induces an induction principle
\rightarrow For each equation:
show P holds for lhs, provided P holds for each recursive call on rhs

fun - induction principle

\rightarrow Each fun definition induces an induction principle
\rightarrow For each equation:
show P holds for lhs, provided P holds for each recursive call on rhs
\rightarrow Example sep.induct:
【 \bigwedge a. P a [];
\aw. $P a[w]$
\axyzs. $P a(y \# z s) \Longrightarrow P a(x \# y \# z s) ;$
$\rrbracket \Longrightarrow P a x s$

Termination

Isabelle tries to prove termination automatically

\rightarrow For most functions this works with a lexicographic termination relation.

Termination

Isabelle tries to prove termination automatically
\rightarrow For most functions this works with a lexicographic termination relation.
\rightarrow Sometimes not

Termination

Isabelle tries to prove termination automatically
\rightarrow For most functions this works with a lexicographic termination relation.
\rightarrow Sometimes not \Rightarrow error message with unsolved subgoal

Termination

Isabelle tries to prove termination automatically

\rightarrow For most functions this works with a lexicographic termination relation.
\rightarrow Sometimes not \Rightarrow error message with unsolved subgoal
\rightarrow You can prove termination separately.
function (sequential) quicksort where
quicksort [] = [] |
quicksort $(x \# x s)=$ quicksort $[y \leftarrow x s . y \leq x] @[x] @$ quicksort $[y \leftarrow x s . x<y]$ by pat_completeness auto
termination
by (relation "measure length") (auto simp: less_Suc_eq_le)

Demo

1
IATA

III 1.
cairo
I

相

!

How does fun/function work?

Recall primrec:
\rightarrow defined one recursion operator per datatype D

How does fun/function work?

Recall primrec:
\rightarrow defined one recursion operator per datatype D
\rightarrow inductive definition of its graph $(x, f x) \in D$ _rel

How does fun/function work?

Recall primrec:
\rightarrow defined one recursion operator per datatype D
\rightarrow inductive definition of its graph $(x, f x) \in D _r e l$
\rightarrow prove totality: $\forall x . \exists y .(x, y) \in D_{\text {rel }}$

How does fun/function work?

Recall primrec:
\rightarrow defined one recursion operator per datatype D
\rightarrow inductive definition of its graph $(x, f x) \in D _r e l$
\rightarrow prove totality: $\forall x . \exists y .(x, y) \in D_{\text {rel }}$
\rightarrow prove uniqueness: $(x, y) \in D _r e l \Rightarrow(x, z) \in D_{_} r e l \Rightarrow y=z$

How does fun/function work?

Recall primrec:
\rightarrow defined one recursion operator per datatype D
\rightarrow inductive definition of its graph $(x, f x) \in D _r e l$
\rightarrow prove totality: $\forall x . \exists y .(x, y) \in D_{\text {rel }}$
\rightarrow prove uniqueness: $(x, y) \in D _r e l \Rightarrow(x, z) \in D _r e l \Rightarrow y=z$
\rightarrow recursion operator for datatype D_{-}rec, defined via THE .

How does fun/function work?

Recall primrec:
\rightarrow defined one recursion operator per datatype D
\rightarrow inductive definition of its graph $(x, f x) \in D _r e l$
\rightarrow prove totality: $\forall x . \exists y .(x, y) \in D_{\text {rel }}$
\rightarrow prove uniqueness: $(x, y) \in D _r e l \Rightarrow(x, z) \in D _r e l \Rightarrow y=z$
\rightarrow recursion operator for datatype D_{-}rec, defined via THE .
\rightarrow primrec: apply datatype recursion operator

How does fun/function work?

Similar strategy for fun:
\rightarrow a new inductive definition for each fun f
\rightarrow extract recursion scheme for equations in f
\rightarrow define graph f_{-}rel inductively, encoding recursion scheme
\rightarrow prove totality (= termination)
\rightarrow prove uniqueness (automatic)
\rightarrow derive original equations from $f_{\text {_rel }}$
\rightarrow export induction scheme from $f_{\text {_rel }}$

How does fun/function work?

function can separate and defer termination proof:
\rightarrow skip proof of totality

How does fun/function work?

function can separate and defer termination proof:
\rightarrow skip proof of totality
\rightarrow instead derive equations of the form: $x \in f_{-}$dom $\Rightarrow f x=\ldots$
\rightarrow similarly, conditional induction principle

How does fun/function work?

function can separate and defer termination proof:
\rightarrow skip proof of totality
\rightarrow instead derive equations of the form: $x \in f_{-}$dom $\Rightarrow f x=\ldots$
\rightarrow similarly, conditional induction principle
\rightarrow f_dom $=$ acc f_{-}rel
$\rightarrow a c c=$ accessible part of $f_{\text {_rel }}$
\rightarrow the part that can be reached in finitely many steps

How does fun/function work?

function can separate and defer termination proof:
\rightarrow skip proof of totality
\rightarrow instead derive equations of the form: $x \in f_{-}$dom $\Rightarrow f x=\ldots$
\rightarrow similarly, conditional induction principle
\rightarrow f_dom $=$ acc f_{-}rel
$\rightarrow a c c=$ accessible part of $f_{\text {_rel }}$
\rightarrow the part that can be reached in finitely many steps
\rightarrow termination $=\forall x . x \in f_{-} d o m$
\rightarrow still have conditional equations for partial functions

Proving Termination

termination fun_name sets up termination goal $\forall x . x \in$ fun_name_dom
Three main proof methods:

Proving Termination

termination fun_name sets up termination goal $\forall x . x \in$ fun_name_dom
Three main proof methods:
\rightarrow lexicographic_order (default tried by fun)

Proving Termination

termination fun_name sets up termination goal $\forall x . x \in$ fun_name_dom
Three main proof methods:
\rightarrow lexicographic_order (default tried by fun)
\rightarrow size_change (automated translation to simpler size-change graph ${ }^{1}$)
${ }^{1}$ C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.

Proving Termination

termination fun_name sets up termination goal $\forall x . x \in$ fun_name_dom
Three main proof methods:
\rightarrow lexicographic_order (default tried by fun)
\rightarrow size_change (automated translation to simpler size-change graph ${ }^{1}$)
\rightarrow relation \mathbf{R} (manual proof via well-founded relation)
${ }^{1}$ C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.

Well Founded Orders

Definition

$<_{r}$ is well founded if well founded induction holds

$$
\mathrm{wf}\left(<_{r}\right) \equiv \forall P .\left(\forall x .\left(\forall y<_{r} x . P y\right) \longrightarrow P x\right) \longrightarrow(\forall x . P x)
$$

Well Founded Orders

Definition

$<_{r}$ is well founded if well founded induction holds

$$
\mathrm{wf}\left(<_{r}\right) \equiv \forall P .\left(\forall x .\left(\forall y<_{r} x . P y\right) \longrightarrow P x\right) \longrightarrow(\forall x . P x)
$$

Well founded induction rule:

$$
\frac{\mathrm{wf}\left(<_{r}\right) \bigwedge x \cdot\left(\forall y{<_{r}} x \cdot P y\right) \Longrightarrow P x}{P a}
$$

Well Founded Orders

Definition

$<_{r}$ is well founded if well founded induction holds

$$
w f\left(<_{r}\right) \equiv \forall P .\left(\forall x .\left(\forall y<_{r} x . P y\right) \longrightarrow P x\right) \longrightarrow(\forall x . P x)
$$

Well founded induction rule:

$$
\frac{\mathrm{wf}\left(<_{r}\right) \wedge x \cdot\left(\forall y<_{r} x . P y\right) \Longrightarrow P x}{P a}
$$

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt $<_{r}$

$$
\begin{aligned}
\min \left(<_{r}\right) Q x & \equiv \forall y \in Q \cdot y \not \not_{r} x \\
\mathrm{wf}\left(<_{r}\right) & =(\forall Q \neq\{ \} . \exists m \in Q \cdot \min r Q m)
\end{aligned}
$$

Well Founded Orders: Examples

$\rightarrow<$ on \mathbb{N} is well founded
well founded induction $=$ complete induction

Well Founded Orders: Examples

$\rightarrow<$ on \mathbb{N} is well founded well founded induction $=$ complete induction
$\rightarrow>$ and \leq on \mathbb{N} are not well founded

Well Founded Orders: Examples

$\rightarrow<$ on \mathbb{N} is well founded well founded induction $=$ complete induction
$\rightarrow>$ and \leq on \mathbb{N} are not well founded
$\rightarrow x<_{r} y=x \operatorname{dvd} y \wedge x \neq 1$ on \mathbb{N} is well founded the minimal elements are the prime numbers

Well Founded Orders: Examples

$\rightarrow<$ on \mathbb{N} is well founded well founded induction $=$ complete induction
$\rightarrow>$ and \leq on \mathbb{N} are not well founded
$\rightarrow x<_{r} y=x \operatorname{dvd} y \wedge x \neq 1$ on \mathbb{N} is well founded the minimal elements are the prime numbers
$\rightarrow(a, b)<_{r}(x, y)=a<_{1} x \vee a=x \wedge b<_{2} y$ is well founded if $<_{1}$ and $<_{2}$ are well founded

Well Founded Orders: Examples

$\rightarrow<$ on \mathbb{N} is well founded well founded induction $=$ complete induction
$\rightarrow>$ and \leq on \mathbb{N} are not well founded
$\rightarrow x<_{r} y=x \operatorname{dvd} y \wedge x \neq 1$ on \mathbb{N} is well founded the minimal elements are the prime numbers
$\rightarrow(a, b)<_{r}(x, y)=a<_{1} x \vee a=x \wedge b<_{2} y$ is well founded if $<_{1}$ and $<_{2}$ are well founded
$\rightarrow A<_{r} B=A \subset B \wedge$ finite B is well founded

Well Founded Orders: Examples

$\rightarrow<$ on \mathbb{N} is well founded well founded induction $=$ complete induction
$\rightarrow>$ and \leq on \mathbb{N} are not well founded
$\rightarrow x<_{r} y=x \operatorname{dvd} y \wedge x \neq 1$ on \mathbb{N} is well founded the minimal elements are the prime numbers
$\rightarrow(a, b)<_{r}(x, y)=a<_{1} x \vee a=x \wedge b<_{2} y$ is well founded if $<_{1}$ and $<_{2}$ are well founded
$\rightarrow A<_{r} B=A \subset B \wedge$ finite B is well founded
$\rightarrow \subseteq$ and \subset in general are not well founded

More about well founded relations: Term Rewriting and All That

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.
Examples:
\rightarrow fun fib where
fib $0=1 \mid$
fib $($ Suc 0$)=1 \mid$
fib $($ Suc $($ Suc $n))=$ fib $n+f i b($ Suc $n)$

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.
Examples:
\rightarrow fun fib where
fib $0=1 \mid$
fib $($ Suc 0$)=1 \mid$
fib (Suc (Suc n)) $=$ fib $n+f i b($ Suc $n)$
Recursion: Suc (Suc n) $\leadsto \mathrm{n}$, Suc (Suc n) \leadsto Suc n

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.
Examples:
\rightarrow fun fib where
fib $0=1 \mid$
fib $($ Suc 0$)=1 \mid$
fib $($ Suc $($ Suc $n))=$ fib $n+f i b($ Suc $n)$
Recursion: Suc (Suc n) $\leadsto \mathrm{n}$, Suc (Suc n) \leadsto Suc n
\rightarrow fun f where $f x=(i f x=0$ then 0 else $f(x-1) * 2)$

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.
Examples:
\rightarrow fun fib where
fib $0=1 \mid$
fib $($ Suc 0$)=1 \mid$
fib $($ Suc $($ Suc $n))=$ fib $n+f i b($ Suc $n)$
Recursion: Suc (Suc n) $\leadsto \mathrm{n}$, Suc (Suc n) \leadsto Suc n
\rightarrow fun f where $f x=($ if $x=0$ then 0 else $f(x-1) * 2)$
Recursion: $x \neq 0 \Longrightarrow x \leadsto x-1$

Extracting the Recursion Scheme

Higher Order:
\rightarrow datatype 'a tree $=$ Leaf 'a \mid Branch 'a tree list
fun treemap :: ('a \Rightarrow 'a) \Rightarrow 'a tree \Rightarrow 'a tree where treemap fn (Leaf n) $=$ Leaf (fn $n) \mid$ treemap $\mathrm{fn}($ Branch I$)=\operatorname{Branch}(\operatorname{map}($ treemap fn$) \mathrm{I})$

Extracting the Recursion Scheme

Higher Order:
\rightarrow datatype 'a tree $=$ Leaf 'a \mid Branch 'a tree list
fun treemap :: ('a \Rightarrow 'a) \Rightarrow 'a tree \Rightarrow 'a tree where treemap fn (Leaf $n)=\operatorname{Leaf}(f n n) \mid$ treemap $\mathrm{fn}($ Branch I$)=\operatorname{Branch}(\operatorname{map}($ treemap fn$) \mathrm{I})$

Recursion: $x \in$ set $I \Longrightarrow(f n$, Branch $I) \leadsto(f n, x)$

Extracting the Recursion Scheme

Higher Order:
\rightarrow datatype 'a tree $=$ Leaf 'a \mid Branch 'a tree list
fun treemap :: ('a \Rightarrow 'a) \Rightarrow 'a tree \Rightarrow 'a tree where
treemap fn (Leaf n) $=$ Leaf (fn n) \mid
treemap $\mathrm{fn}($ Branch I$)=$ Branch $(\operatorname{map}($ treemap fn$) \mathrm{I})$
Recursion: $x \in$ set $I \Longrightarrow(f n$, Branch $I) \leadsto(f n, x)$

How does Isabelle extract context information for the call?

Extracting the Recursion Scheme

Extracting context for equations

Extracting the Recursion Scheme

Extracting context for equations \Rightarrow
 Congruence Rules!

Extracting the Recursion Scheme

Extracting context for equations \Rightarrow
 Congruence Rules!

Recall rule if_cong:

$$
[|\mathrm{b}=\mathrm{c} ; \mathrm{c} \Longrightarrow \mathrm{x}=\mathrm{u} ; \neg \mathrm{c} \Longrightarrow \mathrm{y}=\mathrm{v}|] \Longrightarrow
$$

(if b then x else y) $=($ if c then u else v)

Read: for transforming x, use b as context information, for y use $\neg b$.

Extracting the Recursion Scheme

Extracting context for equations \Rightarrow
 Congruence Rules!

Recall rule if_cong:

$$
[|b=c ; c \Longrightarrow x=u ; \neg c \Longrightarrow y=v|] \Longrightarrow
$$

(if b then x else y) $=($ if c then u else v)

Read: for transforming x, use b as context information, for y use $\neg b$. In fun_def: for recursion in x , use b as context, for y use $\neg b$.

Congruence Rules for fun defs

The same works for function definitions.
declare my_rule[fundef_cong]

Congruence Rules for fun defs

The same works for function definitions.
declare my_rule[fundef_cong]
(if_cong already added by default)

Another example (higher-order):
$[\mid \mathrm{xs}=\mathrm{ys} ; \wedge \mathrm{x} . \mathrm{x} \in$ set $\mathrm{ys} \Longrightarrow \mathrm{fx}=\mathrm{g} \times \mid] \Longrightarrow$ map $\mathrm{fxs}=$ map g ys

Congruence Rules for fun defs

The same works for function definitions.
declare my_rule[fundef_cong]
(if_cong already added by default)

Another example (higher-order):
$[\mid \mathrm{xs}=\mathrm{ys} ; \wedge \mathrm{x} . \mathrm{x} \in$ set $\mathrm{ys} \Longrightarrow \mathrm{fx}=\mathrm{g} \times \mid] \Longrightarrow$ map $\mathrm{fxs}=$ map g ys
Read: for recursive calls in f, f is called with elements of $x s$

Demo

1
IATA

III 1.
cairo
I

相

!

Further Reading

Alexander Krauss,
Automating Recursive Definitions and Termination Proofs in Higher-Order Logic.
PhD thesis, TU Munich, 2009.
https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf

We have seen today ...

\rightarrow General recursion with fun/function
\rightarrow Induction over recursive functions
\rightarrow How fun works
\rightarrow Termination, partial functions, congruence rules

[^0]: ${ }^{a}$ a1 due; ${ }^{b}$ a2 due; ${ }^{c}$ a3 due

