
COMP4161: Advanced Topics in Software Verification

fun
June Andronick, Christine Rizkallah, Miki Tanaka, Johannes Åman Pohjola

T3/2019

data61.csiro.au

Content

Ü Intro & motivation, getting started [1]

Ü Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic, Isar (part 1) [3a]

• Term rewriting [4]

Ü Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction, Isar (part 2) [6, 7b]

• Hoare logic, proofs about programs, invariants [8]

• C verification [9]

• Practice, questions, exam prep [10c]

aa1 due; ba2 due; ca3 due

2 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

General Recursion

The Choice

Ü Limited expressiveness, automatic termination

• primrec

Ü High expressiveness, termination proof may fail

• fun

Ü High expressiveness, tweakable, termination proof manual

• function

3 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

General Recursion

The Choice

Ü Limited expressiveness, automatic termination

• primrec

Ü High expressiveness, termination proof may fail

• fun

Ü High expressiveness, tweakable, termination proof manual

• function

3 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

fun — examples

fun sep :: ”’a ⇒ ’a list ⇒ ’a list”
where

”sep a (x # y # zs) = x # a # sep a (y # zs)” |
”sep a xs = xs”

4 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

fun — examples

fun sep :: ”’a ⇒ ’a list ⇒ ’a list”
where

”sep a (x # y # zs) = x # a # sep a (y # zs)” |
”sep a xs = xs”

fun ack :: ”nat ⇒ nat ⇒ nat”
where

”ack 0 n = Suc n” |
”ack (Suc m) 0 = ack m 1” |
”ack (Suc m) (Suc n) = ack m (ack (Suc m) n)”

4 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

fun

Ü More permissive than primrec:

• pattern matching in all parameters
• nested, linear constructor patterns
• reads equations sequentially like in Haskell (top to bottom)
• proves termination automatically in many cases

(tries lexicographic order)

Ü Generates more theorems than primrec

5 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

fun

Ü More permissive than primrec:

• pattern matching in all parameters
• nested, linear constructor patterns
• reads equations sequentially like in Haskell (top to bottom)
• proves termination automatically in many cases

(tries lexicographic order)

Ü Generates more theorems than primrec

5 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

fun

Ü More permissive than primrec:

• pattern matching in all parameters
• nested, linear constructor patterns
• reads equations sequentially like in Haskell (top to bottom)
• proves termination automatically in many cases

(tries lexicographic order)

Ü Generates more theorems than primrec

Ü May fail to prove termination:

• use function (sequential) instead
• allows you to prove termination manually

5 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

fun — induction principle

Ü Each fun definition induces an induction principle

Ü For each equation:

show P holds for lhs, provided P holds for each recursive call on rhs

Ü Example sep.induct:
[[
∧

a. P a [];∧
a w . P a [w]∧
a x y zs. P a (y#zs) =⇒ P a (x#y#zs);

]] =⇒ P a xs

6 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

fun — induction principle

Ü Each fun definition induces an induction principle

Ü For each equation:

show P holds for lhs, provided P holds for each recursive call on rhs

Ü Example sep.induct:
[[
∧

a. P a [];∧
a w . P a [w]∧
a x y zs. P a (y#zs) =⇒ P a (x#y#zs);

]] =⇒ P a xs

6 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

fun — induction principle

Ü Each fun definition induces an induction principle

Ü For each equation:

show P holds for lhs, provided P holds for each recursive call on rhs

Ü Example sep.induct:
[[
∧

a. P a [];∧
a w . P a [w]∧
a x y zs. P a (y#zs) =⇒ P a (x#y#zs);

]] =⇒ P a xs

6 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Termination

Isabelle tries to prove termination automatically

Ü For most functions this works with a lexicographic termination relation.

Ü Sometimes not ⇒ error message with unsolved subgoal

Ü You can prove termination separately.

function (sequential) quicksort where
quicksort [] = [] |
quicksort (x#xs) = quicksort [y ← xs.y ≤ x]@[x]@ quicksort [y ← xs.x < y]
by pat completeness auto

termination

by (relation “measure length”) (auto simp: less Suc eq le)

7 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Termination

Isabelle tries to prove termination automatically

Ü For most functions this works with a lexicographic termination relation.

Ü Sometimes not

⇒ error message with unsolved subgoal

Ü You can prove termination separately.

function (sequential) quicksort where
quicksort [] = [] |
quicksort (x#xs) = quicksort [y ← xs.y ≤ x]@[x]@ quicksort [y ← xs.x < y]
by pat completeness auto

termination

by (relation “measure length”) (auto simp: less Suc eq le)

7 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Termination

Isabelle tries to prove termination automatically

Ü For most functions this works with a lexicographic termination relation.

Ü Sometimes not ⇒ error message with unsolved subgoal

Ü You can prove termination separately.

function (sequential) quicksort where
quicksort [] = [] |
quicksort (x#xs) = quicksort [y ← xs.y ≤ x]@[x]@ quicksort [y ← xs.x < y]
by pat completeness auto

termination

by (relation “measure length”) (auto simp: less Suc eq le)

7 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Termination

Isabelle tries to prove termination automatically

Ü For most functions this works with a lexicographic termination relation.

Ü Sometimes not ⇒ error message with unsolved subgoal

Ü You can prove termination separately.

function (sequential) quicksort where
quicksort [] = [] |
quicksort (x#xs) = quicksort [y ← xs.y ≤ x]@[x]@ quicksort [y ← xs.x < y]
by pat completeness auto

termination

by (relation “measure length”) (auto simp: less Suc eq le)

7 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Demo

How does fun/function work?

Recall primrec:

Ü defined one recursion operator per datatype D

Ü inductive definition of its graph (x , f x) ∈ D rel

Ü prove totality: ∀x . ∃y . (x , y) ∈ D rel

Ü prove uniqueness: (x , y) ∈ D rel ⇒ (x , z) ∈ D rel ⇒ y = z

Ü recursion operator for datatype D rec, defined via THE .

Ü primrec: apply datatype recursion operator

9 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

How does fun/function work?

Recall primrec:

Ü defined one recursion operator per datatype D

Ü inductive definition of its graph (x , f x) ∈ D rel

Ü prove totality: ∀x . ∃y . (x , y) ∈ D rel

Ü prove uniqueness: (x , y) ∈ D rel ⇒ (x , z) ∈ D rel ⇒ y = z

Ü recursion operator for datatype D rec, defined via THE .

Ü primrec: apply datatype recursion operator

9 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

How does fun/function work?

Recall primrec:

Ü defined one recursion operator per datatype D

Ü inductive definition of its graph (x , f x) ∈ D rel

Ü prove totality: ∀x . ∃y . (x , y) ∈ D rel

Ü prove uniqueness: (x , y) ∈ D rel ⇒ (x , z) ∈ D rel ⇒ y = z

Ü recursion operator for datatype D rec, defined via THE .

Ü primrec: apply datatype recursion operator

9 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

How does fun/function work?

Recall primrec:

Ü defined one recursion operator per datatype D

Ü inductive definition of its graph (x , f x) ∈ D rel

Ü prove totality: ∀x . ∃y . (x , y) ∈ D rel

Ü prove uniqueness: (x , y) ∈ D rel ⇒ (x , z) ∈ D rel ⇒ y = z

Ü recursion operator for datatype D rec, defined via THE .

Ü primrec: apply datatype recursion operator

9 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

How does fun/function work?

Recall primrec:

Ü defined one recursion operator per datatype D

Ü inductive definition of its graph (x , f x) ∈ D rel

Ü prove totality: ∀x . ∃y . (x , y) ∈ D rel

Ü prove uniqueness: (x , y) ∈ D rel ⇒ (x , z) ∈ D rel ⇒ y = z

Ü recursion operator for datatype D rec, defined via THE .

Ü primrec: apply datatype recursion operator

9 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

How does fun/function work?

Recall primrec:

Ü defined one recursion operator per datatype D

Ü inductive definition of its graph (x , f x) ∈ D rel

Ü prove totality: ∀x . ∃y . (x , y) ∈ D rel

Ü prove uniqueness: (x , y) ∈ D rel ⇒ (x , z) ∈ D rel ⇒ y = z

Ü recursion operator for datatype D rec, defined via THE .

Ü primrec: apply datatype recursion operator

9 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

How does fun/function work?

Similar strategy for fun:

Ü a new inductive definition for each fun f

Ü extract recursion scheme for equations in f

Ü define graph f rel inductively, encoding recursion scheme

Ü prove totality (= termination)

Ü prove uniqueness (automatic)

Ü derive original equations from f rel

Ü export induction scheme from f rel

10 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

How does fun/function work?

function can separate and defer termination proof:

Ü skip proof of totality

Ü instead derive equations of the form: x ∈ f dom⇒ f x = . . .

Ü similarly, conditional induction principle

Ü f dom = acc f rel

Ü acc = accessible part of f rel

Ü the part that can be reached in finitely many steps

Ü termination = ∀x . x ∈ f dom

Ü still have conditional equations for partial functions

11 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

How does fun/function work?

function can separate and defer termination proof:

Ü skip proof of totality

Ü instead derive equations of the form: x ∈ f dom⇒ f x = . . .

Ü similarly, conditional induction principle

Ü f dom = acc f rel

Ü acc = accessible part of f rel

Ü the part that can be reached in finitely many steps

Ü termination = ∀x . x ∈ f dom

Ü still have conditional equations for partial functions

11 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

How does fun/function work?

function can separate and defer termination proof:

Ü skip proof of totality

Ü instead derive equations of the form: x ∈ f dom⇒ f x = . . .

Ü similarly, conditional induction principle

Ü f dom = acc f rel

Ü acc = accessible part of f rel

Ü the part that can be reached in finitely many steps

Ü termination = ∀x . x ∈ f dom

Ü still have conditional equations for partial functions

11 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

How does fun/function work?

function can separate and defer termination proof:

Ü skip proof of totality

Ü instead derive equations of the form: x ∈ f dom⇒ f x = . . .

Ü similarly, conditional induction principle

Ü f dom = acc f rel

Ü acc = accessible part of f rel

Ü the part that can be reached in finitely many steps

Ü termination = ∀x . x ∈ f dom

Ü still have conditional equations for partial functions

11 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Proving Termination

termination fun name sets up termination goal ∀x . x ∈ fun name dom

Three main proof methods:

Ü lexicographic order (default tried by fun)

Ü size change (automated translation to simpler size-change graph1)

Ü relation R (manual proof via well-founded relation)

1

C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.

12 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Proving Termination

termination fun name sets up termination goal ∀x . x ∈ fun name dom

Three main proof methods:

Ü lexicographic order (default tried by fun)

Ü size change (automated translation to simpler size-change graph1)

Ü relation R (manual proof via well-founded relation)

1

C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.

12 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Proving Termination

termination fun name sets up termination goal ∀x . x ∈ fun name dom

Three main proof methods:

Ü lexicographic order (default tried by fun)

Ü size change (automated translation to simpler size-change graph1)

Ü relation R (manual proof via well-founded relation)

1C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.

12 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Proving Termination

termination fun name sets up termination goal ∀x . x ∈ fun name dom

Three main proof methods:

Ü lexicographic order (default tried by fun)

Ü size change (automated translation to simpler size-change graph1)

Ü relation R (manual proof via well-founded relation)

1C.S. Lee, N.D. Jones, A.M. Ben-Amram,
The Size-change Principle for Program Termination, POPL 2001.

12 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Well Founded Orders

Definition
<r is well founded if well founded induction holds
wf(<r) ≡ ∀P. (∀x . (∀y <r x .P y) −→ P x) −→ (∀x . P x)

Well founded induction rule:

wf(<r)
∧
x . (∀y <r x . P y) =⇒ P x

P a

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt <r

min (<r) Q x ≡ ∀y ∈ Q. y 6<r x
wf (<r) = (∀Q 6= {}. ∃m ∈ Q. min r Q m)

13 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Well Founded Orders

Definition
<r is well founded if well founded induction holds
wf(<r) ≡ ∀P. (∀x . (∀y <r x .P y) −→ P x) −→ (∀x . P x)

Well founded induction rule:

wf(<r)
∧

x . (∀y <r x . P y) =⇒ P x

P a

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt <r

min (<r) Q x ≡ ∀y ∈ Q. y 6<r x
wf (<r) = (∀Q 6= {}. ∃m ∈ Q. min r Q m)

13 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Well Founded Orders

Definition
<r is well founded if well founded induction holds
wf(<r) ≡ ∀P. (∀x . (∀y <r x .P y) −→ P x) −→ (∀x . P x)

Well founded induction rule:

wf(<r)
∧

x . (∀y <r x . P y) =⇒ P x

P a

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt <r

min (<r) Q x ≡ ∀y ∈ Q. y 6<r x
wf (<r) = (∀Q 6= {}. ∃m ∈ Q. min r Q m)

13 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Well Founded Orders: Examples

Ü < on IN is well founded
well founded induction = complete induction

Ü > and ≤ on IN are not well founded

Ü x <r y = x dvd y ∧ x 6= 1 on IN is well founded
the minimal elements are the prime numbers

Ü (a, b) <r (x , y) = a <1 x ∨ a = x ∧ b <2 y is well founded
if <1 and <2 are well founded

Ü A <r B = A ⊂ B ∧ finite B is well founded

Ü ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

14 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Well Founded Orders: Examples

Ü < on IN is well founded
well founded induction = complete induction

Ü > and ≤ on IN are not well founded

Ü x <r y = x dvd y ∧ x 6= 1 on IN is well founded
the minimal elements are the prime numbers

Ü (a, b) <r (x , y) = a <1 x ∨ a = x ∧ b <2 y is well founded
if <1 and <2 are well founded

Ü A <r B = A ⊂ B ∧ finite B is well founded

Ü ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

14 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Well Founded Orders: Examples

Ü < on IN is well founded
well founded induction = complete induction

Ü > and ≤ on IN are not well founded

Ü x <r y = x dvd y ∧ x 6= 1 on IN is well founded
the minimal elements are the prime numbers

Ü (a, b) <r (x , y) = a <1 x ∨ a = x ∧ b <2 y is well founded
if <1 and <2 are well founded

Ü A <r B = A ⊂ B ∧ finite B is well founded

Ü ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

14 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Well Founded Orders: Examples

Ü < on IN is well founded
well founded induction = complete induction

Ü > and ≤ on IN are not well founded

Ü x <r y = x dvd y ∧ x 6= 1 on IN is well founded
the minimal elements are the prime numbers

Ü (a, b) <r (x , y) = a <1 x ∨ a = x ∧ b <2 y is well founded
if <1 and <2 are well founded

Ü A <r B = A ⊂ B ∧ finite B is well founded

Ü ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

14 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Well Founded Orders: Examples

Ü < on IN is well founded
well founded induction = complete induction

Ü > and ≤ on IN are not well founded

Ü x <r y = x dvd y ∧ x 6= 1 on IN is well founded
the minimal elements are the prime numbers

Ü (a, b) <r (x , y) = a <1 x ∨ a = x ∧ b <2 y is well founded
if <1 and <2 are well founded

Ü A <r B = A ⊂ B ∧ finite B is well founded

Ü ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

14 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Well Founded Orders: Examples

Ü < on IN is well founded
well founded induction = complete induction

Ü > and ≤ on IN are not well founded

Ü x <r y = x dvd y ∧ x 6= 1 on IN is well founded
the minimal elements are the prime numbers

Ü (a, b) <r (x , y) = a <1 x ∨ a = x ∧ b <2 y is well founded
if <1 and <2 are well founded

Ü A <r B = A ⊂ B ∧ finite B is well founded

Ü ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

14 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?

Not fixed anymore as in primrec.

Examples:

Ü fun fib where
fib 0 = 1 |
fib (Suc 0) = 1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ; n, Suc (Suc n) ; Suc n

Ü fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: x 6= 0 =⇒ x ; x - 1

15 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:

Ü fun fib where
fib 0 = 1 |
fib (Suc 0) = 1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ; n, Suc (Suc n) ; Suc n

Ü fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: x 6= 0 =⇒ x ; x - 1

15 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:

Ü fun fib where
fib 0 = 1 |
fib (Suc 0) = 1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ; n, Suc (Suc n) ; Suc n

Ü fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: x 6= 0 =⇒ x ; x - 1

15 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:

Ü fun fib where
fib 0 = 1 |
fib (Suc 0) = 1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ; n, Suc (Suc n) ; Suc n

Ü fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: x 6= 0 =⇒ x ; x - 1

15 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?
Not fixed anymore as in primrec.

Examples:

Ü fun fib where
fib 0 = 1 |
fib (Suc 0) = 1 |
fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) ; n, Suc (Suc n) ; Suc n

Ü fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: x 6= 0 =⇒ x ; x - 1

15 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Extracting the Recursion Scheme

Higher Order:

Ü datatype ’a tree = Leaf ’a | Branch ’a tree list

fun treemap :: (’a ⇒ ’a) ⇒ ’a tree ⇒ ’a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch l) = Branch (map (treemap fn) l)

Recursion: x ∈ set l =⇒ (fn, Branch l) ; (fn, x)

How does Isabelle extract context information for the call?

16 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Extracting the Recursion Scheme

Higher Order:

Ü datatype ’a tree = Leaf ’a | Branch ’a tree list

fun treemap :: (’a ⇒ ’a) ⇒ ’a tree ⇒ ’a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch l) = Branch (map (treemap fn) l)

Recursion: x ∈ set l =⇒ (fn, Branch l) ; (fn, x)

How does Isabelle extract context information for the call?

16 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Extracting the Recursion Scheme

Higher Order:

Ü datatype ’a tree = Leaf ’a | Branch ’a tree list

fun treemap :: (’a ⇒ ’a) ⇒ ’a tree ⇒ ’a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch l) = Branch (map (treemap fn) l)

Recursion: x ∈ set l =⇒ (fn, Branch l) ; (fn, x)

How does Isabelle extract context information for the call?

16 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Extracting the Recursion Scheme

Extracting context for equations

⇒
Congruence Rules!

Recall rule if cong:

[| b = c; c =⇒ x = u; ¬ c =⇒ y = v |] =⇒
(if b then x else y) = (if c then u else v)

Read: for transforming x , use b as context information, for y use ¬b.
In fun def: for recursion in x, use b as context, for y use ¬b.

17 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Extracting the Recursion Scheme

Extracting context for equations
⇒

Congruence Rules!

Recall rule if cong:

[| b = c; c =⇒ x = u; ¬ c =⇒ y = v |] =⇒
(if b then x else y) = (if c then u else v)

Read: for transforming x , use b as context information, for y use ¬b.
In fun def: for recursion in x, use b as context, for y use ¬b.

17 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Extracting the Recursion Scheme

Extracting context for equations
⇒

Congruence Rules!

Recall rule if cong:

[| b = c; c =⇒ x = u; ¬ c =⇒ y = v |] =⇒
(if b then x else y) = (if c then u else v)

Read: for transforming x , use b as context information, for y use ¬b.

In fun def: for recursion in x, use b as context, for y use ¬b.

17 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Extracting the Recursion Scheme

Extracting context for equations
⇒

Congruence Rules!

Recall rule if cong:

[| b = c; c =⇒ x = u; ¬ c =⇒ y = v |] =⇒
(if b then x else y) = (if c then u else v)

Read: for transforming x , use b as context information, for y use ¬b.
In fun def: for recursion in x, use b as context, for y use ¬b.

17 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Congruence Rules for fun defs

The same works for function definitions.

declare my rule[fundef cong]

(if cong already added by default)

Another example (higher-order):
[| xs = ys;

∧
x. x ∈ set ys =⇒ f x = g x |] =⇒ map f xs = map g ys

Read: for recursive calls in f , f is called with elements of xs

18 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Congruence Rules for fun defs

The same works for function definitions.

declare my rule[fundef cong]
(if cong already added by default)

Another example (higher-order):
[| xs = ys;

∧
x. x ∈ set ys =⇒ f x = g x |] =⇒ map f xs = map g ys

Read: for recursive calls in f , f is called with elements of xs

18 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Congruence Rules for fun defs

The same works for function definitions.

declare my rule[fundef cong]
(if cong already added by default)

Another example (higher-order):
[| xs = ys;

∧
x. x ∈ set ys =⇒ f x = g x |] =⇒ map f xs = map g ys

Read: for recursive calls in f , f is called with elements of xs

18 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

Demo

Further Reading

Alexander Krauss,
Automating Recursive Definitions and Termination Proofs
in Higher-Order Logic.
PhD thesis, TU Munich, 2009.

https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf

20 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

https://www21.in.tum.de/~krauss/papers/krauss-thesis.pdf

We have seen today ...

Ü General recursion with fun/function

Ü Induction over recursive functions

Ü How fun works

Ü Termination, partial functions, congruence rules

21 | COMP4161 | c© Data61, CSIRO: provided under Creative Commons Attribution License

