
COMP4161: Advanced Topics in Software Verification

{P} . . . {Q}
Gerwin Klein, Johannes Åman Pohjola, Christine Rizkallah, Miki Tanaka

T3/2020

Last Time

Ü Syntax of a simple imperative language

Ü Operational semantics

Ü Program proof on operational semantics

Ü Hoare logic rules

Ü Soundness of Hoare logic

2 | COMP4161 | CC-BY-4.0 License

Content

Ü Foundations & Principles

• Intro, Lambda calculus, natural deduction [1,2]

• Higher Order Logic, Isar (part 1) [2,3a]

• Term rewriting [3,4]

Ü Proof & Specification Techniques

• Inductively defined sets, rule induction, datatype induction, primitive
recursion [4,5]

• General recursive functions, termination proofs [7b]

• Proof automation, Hoare logic, proofs about programs, invariants [8]

• C verification [9,10]

• Practice, questions, examp prep [10c]

aa1 due; ba2 due; ca3 due

3 | COMP4161 | CC-BY-4.0 License

Automation?

Last time: Hoare rule application is nicer than using operational
semantic.

BUT:

Ü it’s still kind of tedious

Ü it seems boring & mechanical

Automation?

4 | COMP4161 | CC-BY-4.0 License

Invariant

Problem: While – need creativity to find right (invariant) P

Solution:

Ü annotate program with invariants

Ü then, Hoare rules can be applied automatically

5 | COMP4161 | CC-BY-4.0 License

Invariant

Problem: While – need creativity to find right (invariant) P

Solution:

Ü annotate program with invariants

Ü then, Hoare rules can be applied automatically

5 | COMP4161 | CC-BY-4.0 License

Invariant

Problem: While – need creativity to find right (invariant) P

Solution:

Ü annotate program with invariants

Ü then, Hoare rules can be applied automatically

5 | COMP4161 | CC-BY-4.0 License

Invariant

Problem: While – need creativity to find right (invariant) P

Solution:

Ü annotate program with invariants

Ü then, Hoare rules can be applied automatically

5 | COMP4161 | CC-BY-4.0 License

Invariant

Problem: While – need creativity to find right (invariant) P

Solution:

Ü annotate program with invariants

Ü then, Hoare rules can be applied automatically

Example:

{M = 0 ∧ N = 0}
WHILE M 6= a INV {N = M ∗ b} DO N := N + b;M := M + 1 OD
{N = a ∗ b}

5 | COMP4161 | CC-BY-4.0 License

Weakest Preconditions

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q =

Q
pre (x := a) Q = λσ. Q(σ(x := aσ))
pre (c1; c2) Q = pre c1 (pre c2 Q)
pre (IF b THEN c1 ELSE c2) Q = λσ. (bσ −→ pre c1 Q σ) ∧

(¬bσ −→ pre c2 Q σ)
pre (WHILE b INV I DO c OD) Q = I

6 | COMP4161 | CC-BY-4.0 License

Weakest Preconditions

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q
pre (x := a) Q =

λσ. Q(σ(x := aσ))
pre (c1; c2) Q = pre c1 (pre c2 Q)
pre (IF b THEN c1 ELSE c2) Q = λσ. (bσ −→ pre c1 Q σ) ∧

(¬bσ −→ pre c2 Q σ)
pre (WHILE b INV I DO c OD) Q = I

6 | COMP4161 | CC-BY-4.0 License

Weakest Preconditions

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q
pre (x := a) Q = λσ. Q(σ(x := aσ))
pre (c1; c2) Q =

pre c1 (pre c2 Q)
pre (IF b THEN c1 ELSE c2) Q = λσ. (bσ −→ pre c1 Q σ) ∧

(¬bσ −→ pre c2 Q σ)
pre (WHILE b INV I DO c OD) Q = I

6 | COMP4161 | CC-BY-4.0 License

Weakest Preconditions

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q
pre (x := a) Q = λσ. Q(σ(x := aσ))
pre (c1; c2) Q = pre c1 (pre c2 Q)
pre (IF b THEN c1 ELSE c2) Q =

λσ. (bσ −→ pre c1 Q σ) ∧
(¬bσ −→ pre c2 Q σ)

pre (WHILE b INV I DO c OD) Q = I

6 | COMP4161 | CC-BY-4.0 License

Weakest Preconditions

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q
pre (x := a) Q = λσ. Q(σ(x := aσ))
pre (c1; c2) Q = pre c1 (pre c2 Q)
pre (IF b THEN c1 ELSE c2) Q = λσ. (bσ −→ pre c1 Q σ) ∧

(¬bσ −→ pre c2 Q σ)
pre (WHILE b INV I DO c OD) Q =

I

6 | COMP4161 | CC-BY-4.0 License

Weakest Preconditions

pre c Q = weakest P such that {P} c {Q}

With annotated invariants, easy to get:

pre SKIP Q = Q
pre (x := a) Q = λσ. Q(σ(x := aσ))
pre (c1; c2) Q = pre c1 (pre c2 Q)
pre (IF b THEN c1 ELSE c2) Q = λσ. (bσ −→ pre c1 Q σ) ∧

(¬bσ −→ pre c2 Q σ)
pre (WHILE b INV I DO c OD) Q = I

6 | COMP4161 | CC-BY-4.0 License

Verification Conditions

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True
vc (x := a) Q = True
vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))
vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q
vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧
vc c I

vc c Q ∧ (P =⇒ pre c Q) =⇒ {P} c {Q}

7 | COMP4161 | CC-BY-4.0 License

Verification Conditions

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True

vc (x := a) Q = True
vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))
vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q
vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧
vc c I

vc c Q ∧ (P =⇒ pre c Q) =⇒ {P} c {Q}

7 | COMP4161 | CC-BY-4.0 License

Verification Conditions

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True
vc (x := a) Q = True

vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))
vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q
vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧
vc c I

vc c Q ∧ (P =⇒ pre c Q) =⇒ {P} c {Q}

7 | COMP4161 | CC-BY-4.0 License

Verification Conditions

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True
vc (x := a) Q = True
vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))

vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q
vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧
vc c I

vc c Q ∧ (P =⇒ pre c Q) =⇒ {P} c {Q}

7 | COMP4161 | CC-BY-4.0 License

Verification Conditions

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True
vc (x := a) Q = True
vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))
vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q

vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧
(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧
vc c I

vc c Q ∧ (P =⇒ pre c Q) =⇒ {P} c {Q}

7 | COMP4161 | CC-BY-4.0 License

Verification Conditions

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True
vc (x := a) Q = True
vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))
vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q
vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧
vc c I

vc c Q ∧ (P =⇒ pre c Q) =⇒ {P} c {Q}

7 | COMP4161 | CC-BY-4.0 License

Verification Conditions

{pre c Q} c {Q} only true under certain conditions

These are called verification conditions vc c Q:

vc SKIP Q = True
vc (x := a) Q = True
vc (c1; c2) Q = vc c2 Q ∧ (vc c1 (pre c2 Q))
vc (IF b THEN c1 ELSE c2) Q = vc c1 Q ∧ vc c2 Q
vc (WHILE b INV I DO c OD) Q = (∀σ. Iσ ∧ bσ −→ pre c I σ)∧

(∀σ. Iσ ∧ ¬bσ −→ Q σ)∧
vc c I

vc c Q ∧ (P =⇒ pre c Q) =⇒ {P} c {Q}

7 | COMP4161 | CC-BY-4.0 License

Syntax Tricks

Ü x := λσ. 1 instead of x := 1 sucks

Ü {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:

Ü declare program variables with each Hoare triple
• nice, usual syntax
• works well if you state full program and only use vcg

Ü separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically
• more syntactic overhead
• program pieces compose nicely

8 | COMP4161 | CC-BY-4.0 License

Syntax Tricks

Ü x := λσ. 1 instead of x := 1 sucks

Ü {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:

Ü declare program variables with each Hoare triple
• nice, usual syntax
• works well if you state full program and only use vcg

Ü separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically
• more syntactic overhead
• program pieces compose nicely

8 | COMP4161 | CC-BY-4.0 License

Syntax Tricks

Ü x := λσ. 1 instead of x := 1 sucks

Ü {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:

Ü declare program variables with each Hoare triple
• nice, usual syntax
• works well if you state full program and only use vcg

Ü separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically
• more syntactic overhead
• program pieces compose nicely

8 | COMP4161 | CC-BY-4.0 License

Syntax Tricks

Ü x := λσ. 1 instead of x := 1 sucks

Ü {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:

Ü declare program variables with each Hoare triple

• nice, usual syntax
• works well if you state full program and only use vcg

Ü separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically
• more syntactic overhead
• program pieces compose nicely

8 | COMP4161 | CC-BY-4.0 License

Syntax Tricks

Ü x := λσ. 1 instead of x := 1 sucks

Ü {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:

Ü declare program variables with each Hoare triple
• nice, usual syntax
• works well if you state full program and only use vcg

Ü separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically
• more syntactic overhead
• program pieces compose nicely

8 | COMP4161 | CC-BY-4.0 License

Syntax Tricks

Ü x := λσ. 1 instead of x := 1 sucks

Ü {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:

Ü declare program variables with each Hoare triple
• nice, usual syntax
• works well if you state full program and only use vcg

Ü separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically

• more syntactic overhead
• program pieces compose nicely

8 | COMP4161 | CC-BY-4.0 License

Syntax Tricks

Ü x := λσ. 1 instead of x := 1 sucks

Ü {λσ. σ x = n} instead of {x = n} sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:

Ü declare program variables with each Hoare triple
• nice, usual syntax
• works well if you state full program and only use vcg

Ü separate program variables from Hoare triple (use extensible records),
indicate usage as function syntactically
• more syntactic overhead
• program pieces compose nicely

8 | COMP4161 | CC-BY-4.0 License

Demo

Arrays

Depending on language, model arrays as functions:

Ü Array access = function application:
a[i] = a i

Ü Array update = function update:
a[i] :== v = a :== a(i:= v)

Use lists to express length:

Ü Array access = nth:
a[i] = a ! i

Ü Array update = list update:
a[i] :== v = a :== a[i:= v]

Ü Array length = list length:
a.length = length a

10 | COMP4161 | CC-BY-4.0 License

Arrays

Depending on language, model arrays as functions:

Ü Array access = function application:
a[i] = a i

Ü Array update = function update:
a[i] :== v = a :== a(i:= v)

Use lists to express length:

Ü Array access = nth:
a[i] = a ! i

Ü Array update = list update:
a[i] :== v = a :== a[i:= v]

Ü Array length = list length:
a.length = length a

10 | COMP4161 | CC-BY-4.0 License

Pointers

Choice 1

datatype ref = Ref int | Null
types heap = int ⇒ val
datatype val = Int int | Bool bool | Struct x int int bool | . . .

Ü hp :: heap, p :: ref

Ü Pointer access: *p = the Int (hp (the addr p))

Ü Pointer update: *p :== v = hp :== hp ((the addr p) := v)

Ü a bit klunky

Ü gets even worse with structs

Ü lots of value extraction (the Int) in spec and program

11 | COMP4161 | CC-BY-4.0 License

Pointers

Choice 1

datatype ref = Ref int | Null
types heap = int ⇒ val
datatype val = Int int | Bool bool | Struct x int int bool | . . .

Ü hp :: heap, p :: ref

Ü Pointer access: *p = the Int (hp (the addr p))

Ü Pointer update: *p :== v = hp :== hp ((the addr p) := v)

Ü a bit klunky

Ü gets even worse with structs

Ü lots of value extraction (the Int) in spec and program

11 | COMP4161 | CC-BY-4.0 License

Pointers

Choice 1

datatype ref = Ref int | Null
types heap = int ⇒ val
datatype val = Int int | Bool bool | Struct x int int bool | . . .

Ü hp :: heap, p :: ref

Ü Pointer access: *p = the Int (hp (the addr p))

Ü Pointer update: *p :== v = hp :== hp ((the addr p) := v)

Ü a bit klunky

Ü gets even worse with structs

Ü lots of value extraction (the Int) in spec and program

11 | COMP4161 | CC-BY-4.0 License

Pointers

Choice 2 (Burstall ’72, Bornat ’00)

Example: struct with next pointer and element

datatype ref = Ref int | Null
types next hp = int ⇒ ref
types elem hp = int ⇒ int

Ü next :: next hp, elem :: elem hp, p :: ref

Ü Pointer access: p→next = next (the addr p)

Ü Pointer update: p→next :== v = next :== next ((the addr p) := v)

In general:

Ü a separate heap for each struct field

Ü buys you p→next 6= p→elem automatically (aliasing)

Ü still assumes type safe language

12 | COMP4161 | CC-BY-4.0 License

Pointers

Choice 2 (Burstall ’72, Bornat ’00)

Example: struct with next pointer and element

datatype ref = Ref int | Null
types next hp = int ⇒ ref
types elem hp = int ⇒ int

Ü next :: next hp, elem :: elem hp, p :: ref

Ü Pointer access: p→next = next (the addr p)

Ü Pointer update: p→next :== v = next :== next ((the addr p) := v)

In general:

Ü a separate heap for each struct field

Ü buys you p→next 6= p→elem automatically (aliasing)

Ü still assumes type safe language

12 | COMP4161 | CC-BY-4.0 License

Pointers

Choice 2 (Burstall ’72, Bornat ’00)

Example: struct with next pointer and element

datatype ref = Ref int | Null
types next hp = int ⇒ ref
types elem hp = int ⇒ int

Ü next :: next hp, elem :: elem hp, p :: ref

Ü Pointer access: p→next = next (the addr p)

Ü Pointer update: p→next :== v = next :== next ((the addr p) := v)

In general:

Ü a separate heap for each struct field

Ü buys you p→next 6= p→elem automatically (aliasing)

Ü still assumes type safe language

12 | COMP4161 | CC-BY-4.0 License

Demo

We have seen today ...

Ü Weakest precondition

Ü Verification conditions

Ü Example program proofs

Ü Arrays, pointers

14 | COMP4161 | CC-BY-4.0 License

