
Advanced Com puter Architecture: s1/ 2005

Project Presen tation – David Mirabito

Handling branches th rough
con text forking

Curren tly:

0x100 add
0x104 m ul
0x108 or
0x10c lw
0x110 and
0x114 beq 0x100

Hypothetical instruction stream
 (operands rem oved)

Curren tly:

0x100 add
0x104 m ul
0x108 or
0x10c lw
0x110 and
0x114 beq 0x100

What now? The operands of th is branch won ' t
be fetched, com pared and have
the result known un til end of the EX
stage... 3 m ore cycles!

Curren tly:

0x100 add
0x104 m ul
0x108 or
0x10c lw
0x110 and
0x114 beq 0x100

 Curren ty handled by large, com plex, power
 consum ing branch prediction logic.
 In test-prin tf th is is found to be 91.9% accurate
 for dir p rediction , and 90.3% accurate with
 target address.

Curren tly:

0x100 add
0x104 m ul
0x108 or
0x10c lw
0x110 and
0x114 beq 0x100
0x100 add
0x104 m ul
0x108 or

Assum ue: Branch SHOULD be taken
Predicted correctly

At th is stage (3 cycles later) we can be sure we
predicted correctly.

Curren tly:

0x100 add
0x104 m ul
0x108 or
0x10c lw
0x110 and
0x114 beq 0x100
0x100 add
0x104 m ul
0x108 or

Assum ue: Branch SHOULD be taken
Predicted correctly

At th is stage (3 cycles later) we can be sure we
predicted correctly.

BUT, 10% of the tim e...

Curren tly:

0x100 add
0x104 m ul
0x108 or
0x10c lw
0x110 and
0x114 beq 0x100

Assum ue: Branch SHOULD be taken
Predicted incorrectly

Curren tly:

0x100 add
0x104 m ul
0x108 or
0x10c lw
0x110 and
0x114 beq 0x100
0x118 ori
0x11c sub
0x120 sw

Assum ue: Branch SHOULD be taken
Predicted incorrectly

Here we realise we were wrong.
Have to nullify incorrect in sts and start again .

The am oun t of nu llified instructions will on ly
increace as fetch , dispatch and execute widths
grow. On th is sim plescalar m odel, th is can be up
to 4 instructions per cycle: 12 poten tial
instructions wasted .

Curren tly:

0x100 add
0x104 m ul
0x108 or
0x10c lw
0x110 and
0x114 beq 0x100
0x118 ori
0x11c sub
0x120 sw
0x100 add
0x104 m ul
0x108 or

Assum ue: Branch SHOULD be taken
Predicted incorrectly

Here we realise we were wrong.
Have to nullify incorrect in sts and start again .

The am oun t of nu llified instructions will on ly
increace as fetch , dispatch and execute widths
grow. On th is sim plescalar m odel, th is can be up
to 4 instructions per cycle: 12 poten tial
instructions wasted .

Curren tly:

0x100 add
0x104 m ul
0x108 or
0x10c lw
0x110 and
0x114 beq 0x100
0x118 ori
0x11c sub
0x120 sw
0x100 add
0x104 m ul
0x108 or

Assum ue: Branch SHOULD be taken
Predicted incorrectly

These represen t wasted fetch bandwidth ,
 com putation cycles and instigate fetching
unneded data/ in sts from
system m em ory.

8.1% x 254825 branches com itted
 = 20640 m ispredicted branches

= 61922 wasted cycles
= 4.9% of execution tim e.

Elsewhere...

0x100 add
0x104 m ul
0x108 or
0x10c lw
0x110 and
0x114 beq 0x100
0x118 ori
0x11c sub
0x120 sw

0x400 sw
0x404 sdd
0x408 m ov
0x40c sll
0x410 addi
0x414 lu i
0x418 subu
0x41c sub
0x420 sb

Instruction
stream s from
2 independen t
threads

Lookahead
window.
Split 50/ 50 for each
thread

Multip le
execute un its
in a
superscalar
arch

HyperThreading allows two threads to be run concurren tly, with one
using the execution un its that the other doesn ' t need. Backend of cpu is
the sim ilar, on ly in strictions need to writeback to correct register file.

Com bin ing the two...

0x100 add
0x104 m ul
0x108 or
0x10c lw
0x110 and

In itially, th ings p roceed as norm al.

Com bin ing the two...

0x100 add
0x104 m ul
0x108 or
0x10c lw
0x110 and
0x114 beq 0x100

In itially, th ings p roceed as norm al.

Un til a branch is h it, in which case the
single stream becom es two logical
th reads, one following each path of
execution (taken / not taken)

0x118 ori 0x100 add

Com bin ing the two...

0x100 add
0x104 m ul
0x108 or
0x10c lw
0x110 and
0x114 beq 0x100

Now, the fetch bandwidth is shared
between each of the new ' forked con texts'
(2 insts/ cycle each, in stead of 4)

Beyond the fron tend th ings rem ain sim ilar,
as in HT. Only we m ust ensure instructions
on ly retire to the appropriate con text

0x118 ori
0x11c sub

0x100 add
0x104 m ul

Com bin ing the two...

0x100 add
0x104 m ul
0x108 or
0x10c lw
0x110 and
0x114 beq 0x100

At th is stage, the resu lt of the com parison
is m ade known.

0x100 add
0x104 m ul
0x108 or

0x118 ori
0x11c sub
0x120 sw

Com bin ing the two...

0x100 add
0x104 m ul
0x108 or
0x10c lw
0x110 and
0x114 beq 0x100
0x100 add
0x104 m ul
0x108 or

At th is stage, the resu lt of the com parison
is m ade known.
We can now take the correct con text and
m erge any changes to its register file /
m em ory back with the paren t con text

Unfortunately...

Im plem enting th is functionality on top of sim -outorder.c with in the
sim plescalar test suite was a m uch larger undertaking than originally
an ticipated.

Curren tly:
Can fork con text upon a branch instruction and split incom ing

 instructions between these 50/ 50. When the branch reaches writeback
 the appropriate con text is selected and the m odified registers are
 written back to the paren t.
But:

Execution does not run to com pletion , m em ory reads/ writes across
 con texts are being corrupted, th is leads to an incorrect address being
 loaded and an attem pted read from 0x00000000, crashing the app.
However:

This is after 4043 cycles, or 3626 instructions, so I will attem pt to
 m ake what conclusions I can .

Stats...

Num branches encountered: 781
% cycles in forked state: 64.3% (2603 / 4043)
avg num insss in con text[0]:
avd num insts in con text[1]:

% tim e stalled con text[0]:
% tim e stalled con text[1]:
% tim e stalled con text[2]:

avg am ount of registers / m em locations writtenback during con text:

Observations...
Som e th ings I noticed whilst stepp ing through traces:

* This will on ly ever be worthwhile if we on ly fork the tim es we m is-predict.
Perhaps not necessary to do th is every branch .

* Still quite useful during com pulsory m isses in the branch p redictor

* Can aid perform ance by prem aturely warm ing cache for the exit code of a loop .
We can brace against the cost of tlb/ cache m iss on th is code during the 2nd and
other iterations of aloop .

* It m ight be beneficial to take advan tage of known com piler quirks:
eg: beq r0 r0 XXX should be considered a non-conditional branch and not be
forked. It is advan tagous that th is isn ' t curren tly done for J in sts.

* It is allowable in the PISA architecture to have 2 adjacen t branch insts. Quite
often one or both ch ild con texts stall when they too com e across a branch and
cannot fork. This indicates that m ore con texts would allow increaced
perform ance (and troubles)

Wishlist...

Other th ings to im plem ent: (in increacing order of need):

* Varying priorities to each con text (eg: 27/ 75), based on confidence
level of the branch predictor.

* Support for m ore than 1 level of forking, so if a forked con text
encoun teres another branch it no longer needs to stall.

* Sm arter handling of JAL / JR com binations. Curren tly can on ly be
done in root con text, to save corruption of the return addr stack in the
branch predictor

* Better reporting / accounting.
* Com plete program correctness

Som e of these can / will be achieved before the report is due.

Conclusions...

* In all likelyhood, th is idea is not worth being im plem ented, considering
cost:benefit ratio.

* Have read other papers doing sim ilar th ings that concluded the sam e
th ing.

* Im plem enting a new idea and seeing how it affects the program trace++

* Yet still im m ensely usefu l as alearn ing exercise: Actually seeing register,
con trol and data dependancies work them selves out in an out of order
environm ent perfectly brings hom e ideas learned in class

* Also skills involved in working on a large, forign codebase built upon

