(1) [4] For each of the following, explain whether or not it is well-formed XML. Explain all violations that you find. (Watch out, some of these might be well-formed)

a) `<comment>For numbers x with x<>5, x/5 is not 1.</comment>`

b) `<auto<node>XF23414</auto<node>>`

c) `<b at="7"/><b at="7"><b at="4"/>`

d) `<inside att="blah<!--a comment--> EOF"/>`

e) ``

f) `<a<!-->-->`

g) `<h><!-- anything here: a-z, .. --></h>`

h) `<a><a/><c></c>`

(2) [3.5] Write pseudo code that uses DOM access to iteratively print all text nodes of a document, in reverse document order (i.e., from right-to-left in terms of the document tree). You may not use recursion!

(3) [3] Write pseudo code that, given a DAG counts how many a-nodes it has, using only one run through the DAG table (every row is visited once).

The DAG is: `dag(node id)=List(node id’s) and lab(node id)=String`.

(4) [3] Explain how hashing is used to find the minimal DAG of a tree. Imagine there are only four labels: a,b,c,f and a hash table with only three buckets; find the dag for `a(b(c,c),b(f,c),b(f,c),b(f,f))`. For this example, what would be an optimal hash function? Explain! (how many node comparisons are saved wrt no-hash or bad hash function?)

(5) [2.5] Imagine a (pre,size) table, given by a mapping size; e.g., for `<a>` we have size(1)=2, size(2)=0, and size(3)=0. Write pseudo code that, for a node p, prints pre-numbers of

a) its descendants
b) its children
c) its parent
d) its following-siblings
e) its preceding nodes.

(6) [4] Consider the following automaton A:

```
          a, b, c
     +-----+-----+-----+
     |     |     |     |
 a-----+-----+-----+     a, b, c
     |     |     |     |
 b-----+-----+-----+-----+ a, b, c
          a-----+-----+-----+
```

a) Show a string accepted by A, and one that is rejected.

Is A deterministic? Give an equivalent deterministic automaton B.

b) Give a regular expression for the strings accepted by A

c) Is your expression from b) 1-unambiguous? Show the Glushkov automaton.

d) Give a 1-unambiguous expression for the strings over a,b which do not contain the substring aa and do not end on a.

(7) [8] Write XPath queries that select

a) all element nodes which have no text children
b) all element nodes which have an a-attribute
c) all element nodes at level 100

(8)[4] For the tree on the right, write numbers of nodes selected by the following XPath expression.

a) /a/b
b) /descendant::a[3]/following::*[2]

d) //a[parent::*//a]
e)//*[not(following::*])
f)//*[*]
g)//*[count(ancestor::*):2]
h)//*[*]
i)//*[count(preceding::*):2]

(9)[2] Explain how the XPath expression EX=//a/b/*//b/a can be evaluated on an XML stream.

a) if you print node numbers
b) if you print the subtrees at selected nodes.

10)[3] Given four nodes in the (pre,post)-plane: (p1,o1),...(p4,o4):

a) Write an SQL query which computes (duplicate-free and in pre-order) the following-nodes of the four nodes (p1,o1) up to (p4,o4).

b) Can you find a query that returns duplicate free answers, but does not use the DISTINCT instruction? Explain.

11)[3] a) Give XPath expression p and q such that p1 0-contained in p2, but not 1-contained.

Give p and q such that p1 1-contained in p2, but not 2-contained.

b) explain why 0- and 1-containment are the same for XPath expression that only use child and descendant axes.

12) [3] Is p 0-contained in q, for

p=/a[100] and q=/a[100]

Good luck and best success with this exam!