XML and Databases

Lecture 2
Memory Representations for XML: Space vs Access Speed

Sebastian Maneth
NICTA and UNSW

CSE@UNSW -- Semester 1, 2009

Reminder

You can freely choose to program your assignments in

- C/C++, or
- Java

However, your code must compile with gcc / g++, javac,
as installed on CSE linux systems!

Assignment 1 is due Monday 23:59, 25t of March!
Submit your code using

% give cs4317 assl Tilename.cpp

% give cs4317 assl filename.java

| ecture 2

XML into Memory

Problem with DOM

- Uses massive amounts of memory.

- Even if application touches only a single element node, the
DOM API has to maintain a data structure that
represents the whole XML input document.

Example

XML size DOM process size

81M X2, 164M Text only, with one embracing element
x 13.1 :

52M — 680M Treebank, deep tree structure with

short texts

Usually: more than 10-times blow up!!

To remedy the memory hunger of DOM ...

Preprocess (i.e., filter) the input XML document to reduce its overall size.

- Use an XPath/XSLT processor to
preselect interesting document regions.

- CAVE: no updates on the input XML document are possible

- CAVE: make sure the XPath/XSLT processor is not implemented
on top of DOM!

= Use a completely different approach to XML processing (=2 SAX)

“design your own XML data structure
and fill in with what you need...”

To remedy the memory hunger of DOM ...

Preprocess (i.e., filter) the input XML document to reduce its overall size.

- Use an XPath/XSLT processor to
preselect interesting document regions.

- CAVE: no updates on the input XML document are possible

- CAVE: make sure the XPath/XSLT processor is not implemented
on top of DOM!

= Use a completely different approach to XML processing (=2 SAX)

“design your own XML data structure
and fill in with what you need...”

Outline

Tree Pointer Structures

Binary Tree Encodings

Minimal Unique DAGs

How to use SAX

1. Tree pointer structures

1. Consider binary trees

Type Node {
label : String,
left : Node,
right : Node

+

How much memory for n-node binary tree?

1. Tree pointer structures

1. Consider binary trees

Type Node {
label :© String,
left : Node,

right : Node
+

How much memory for n-node binary tree?

cadrl: | libranyO my tree: cadrl tadrl tadr2
cadr2: | hopkO tadrl: cadr2 tadr3 tadr4
length(label 1) + 1 3 * length(pointer) * n

+ length(label _2) + 1
+ ... + length(label n) +1

1. Tree pointer structures

1. Consider binary trees

Type Node {
label :© String,
left : Node,

right : Node
+

10

How much memory for n-node binary tree?

cadrl: | libranyO my tree: cadrl tadrl tadr2
cadr2: | hopkO tadrl: cadr2 tadr3 tadr4
length(label 1) + 1 3 * length(pointer) * n

+ length(label _2) + 1
+ ... + length(label _n) +1 typical: 4 bytes

Tree pointer structures

1. Consider binary trees

Type Node {
label :© String,
left : Node,
right : Node

+

11

How much memory for n-node binary tree?

- Whatever is needed for the labels
PLUS 12 bytes per node.

length(label 1) + 1
+ length(label _2) + 1
+ ... + length(label n) +1

3 * length(pointer) * n

typical: 4 bytes

Tree pointer structures

1. Consider binary trees

Type Node {
label :© String,
left : Node,

right : Node
+

12

How much memory for n-node binary tree?

> Whatever is needed for the labels <_———00

PLUS 12 bytes per node. E.g., store each distinct

string only once!

length(label 1) + 1 3 * length(pointer) * n
+ length(label _2) + 1
+ ... + length(label_n) +1 typical: 4 bytes

Can easily be optimized:

Tree pointer structures

1. Consider binary trees

Type Node {
label :© String,
left : Node,
right : Node

+

13

Serialization to XML

<library><book>< .. > .. </book></library>
N\

N\ N\ NN\

#characters per node: 5 + 2 * Length(label)

- E.g., one node w. 4-character ASCI label: 13 bytes (assuming UTF-8!)

14

Tree pointer structures

1. Consider binary trees

Type Node { Byte

label : SteTg,

left : Node,
right : Node

}

Often #distinct node labels is small, *100. - Fits in one Byte
Then, only 9 bytes per node.

= MEM(n-node binary tree pointer struc, *256 labels)
= SIZE(n-node binary tree in XML, average label length=2)

#characters per node: 5 + 2 * Length(label)

- One node w. 2-character ASCI label: 9 bytes (assuming UTF-8!)

15

Tree pointer structures

Nice

Following pointers is fast!
—>much higher access speed!
(than on doc seen as string..)

E.Q.
at root, get right-child.

Often #distinct node labels is small, -100. - Fits in one Byte
Then, only 9 bytes per node.

= MEM(n-node binary tree pointer struc, -256 labels)
= SIZE(n-node binary tree in XML, average label length=2)

#characters per node: 5 + 2 * Length(label)

- One node w. 2-character ASCI label: 9 bytes (assuming UTF-8!)

Tree pointer structures

1. Consider binary trees

(ibrary;

Plain no attributes, no text nodes, ... left right
Question
Using a (top-down) pointer structure, as the one above,
how can you implement a DOM interface?
Node nodeName - DOMString
parentNode - Node
firstChild - Node leftmost child
nextSibling : Node returns NULL for root elem

childNodes - NodeList

16

17

Tree pointer structures

1. Consider binary trees

(ibrary;

Plain no attributes, no text nodes, ... left right

Question

Using a (top-down) pointer structure, as the one above,
how can you implement a DOM interface?

Node nodeName - DOMString
parentNode - Node
firstChild - Node leftmost child
nextSibling : Node returns NULL for root elem
childNodes - NodeList

= At run-time anode is represented as a pointer, PLUS a stack of
pointers of all its ancestors.

(Node, [parent(Node)::parent(parent(Node)):: .. ::root-node])

18

Tree pointer structures

Access speed of parentNode should be approx same, as in a native DOM.
- What about access speed of nextSibling?

What is the run-time size of our “binary DOM-tree” data structure? (WC/average)

Question

Using a (top-down) pointer structure, as the one above,
how can you implement a DOM interface?

Node nodeName - DOMString
parentNode - Node
firstChild - Node leftmost child
nextSibling : Node returns NULL for root elem
childNodes - NodeList

= At run-time anode is represented as a pointer, PLUS a stack of
pointers of all its ancestors.

(Node, [parent(Node)::parent(parent(Node)):: .. ::root-node])

interface Node { // NodeType

const
const
const
const
const
const
const
const
const
const
const
const

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

short
short
short
short
short
short
short
short
short
short
short
short

ELEMENT_NODE
ATTRIBUTE_NODE
TEXT_NODE = 3;
CDATA_SECTION_NODE = 4;
ENTITY_REFERENCE_NODE = 5;
ENTITY_NODE = 6;
PROCESSING_INSTRUCTION_NODE = 7;
COMMENT_NODE = 8;

DOCUMENT_NODE = 9;
DOCUMENT_TYPE_NODE = 10;
DOCUMENT_FRAGMENT_NODE = 11;
NOTATION_NODE = 12;

1;
:2;

readonly attribute DOMString nodeName;

attribute DOMString nodeValue; // raises(DOMException) on setting

readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly

Node i1nsertBefore(in Node newChild, in Node refChild) raises(DOMException);
Node replaceChild(in Node newChild, in Node oldChild) raises(DOMException);

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

// raises(DOMException) on retrieval
unsigned short nodeType;
Node parentNode;
NodeList childNodes;
Node firstChild;
Node lastChild;
Node previousSibling;
Node nextSibling;
NamedNodeMap attributes;
Document ownerDocument;

Node removeChild(in Node oldChild) raises(DOMException);
Node appendChild(in Node newChild) raises(DOMException);
boolean hasChildNodes(); Node cloneNode(in boolean deep); };

20

21

Tree pointer structures

To slash memory hunger (of, e.g., DOM...)

LESSON 1

- Avoid all backward pointers (build them online, dynamically)

binary trees DOM

chi1ldNodes

firstChild
&parent

lastChild
&parent

firstChild
&parent

childNodes

Tree pointer structures

1. Consider binary trees

Type Node {
label : String,
left : Node,

right : Node
+

22

How much memory for n-node binary tree?

How to add attributes and text nodes ?

- e.g., “into the label” ...

Tree pointer structures

2. Consider unranked trees

unranked = no a priori bound on #children of a node.

Tree structure of XML: unranked trees! (not binary)

Type Node {
label : String,
children : List[Node]

}

23

Tree pointer structures

2. Consider unranked trees

unranked = no a priori bound on #children of a node.

Tree structure of XML: unranked trees! (not binary)

Type Node {
label : String,
children : List[Node]
+

- How much memory for List[Node] of n nodes?

24

Tree pointer structures

2. Consider unranked trees

unranked = no a priori bound on #children of a node.

Tree structure of XML: unranked trees!

Typically
Type Node { o next R
l1abel : String, ’ ’
children : List[Node] l l
ks

- How much memory for List[Node] of n nodes?

25

Tree pointer structures

2. Consider unranked trees

unranked = no a priori bound on #children of a node.

Tree structure of XML: unranked trees!

Typically
Type Node { o next R
l1abel : String, ’ ’
children : List[Node] l l
ks

- How much memory for List[Node] of n nodes? 2*n pointers

26

Tree pointer structures

2. Consider unranked trees

- Inthis way, a node of a binary tree needs 5 pointers ®
(plus label info/pointer..)

unranked = no a priori bound on #children of a node.

Tree structure of XML: unranked trees!

Typically
Type Node { o next R
l1abel : String, ’ ’
children : List[Node] l l
ks

- How much memory for List[Node] of n nodes? 2*n pointers

27

28

Tree pointer structures

2. Consider unranked trees

- Inthis way, a node of a binary tree needs 5 pointers ®
(plus label info/pointer..)

More efficient possibilities:
(1) Use arrays. Store #children (e.g., in label). n pointers + (log d) Bits

(2) Encode tree as binary tree.

Typically
Type Node { next >
l1abel : String, ’ ’
children : List[Node] l l
ks

- How much memory for List[Node] of n nodes? 2*n pointers

29

Tree pointer structures

2. Consider unranked trees

- Inthis way, a node of a binary tree needs 5 pointers ®
(plus label info/pointer..)

More efficient possibilities:
(1) Use arrays. Store #children (e.g., in label). n pointers + (log d) Bits

(2) = Encode tree as binary tree. €

Typically
Type Node { next >
l1abel : String, ’ ’
children : List[Node] l l
ks

- How much memory for List[Node] of n nodes? 2*n pointers

2. Binary Tree Encodings

Any unranked tree can be encoded as a binary tree.
Popular encoding: “firstChild/nextSibling” encoding.

The “firstChild” becomes the left pointer
The “nextSibling” becomes the right pointer

firstChild

30

2. Binary Tree Encodings

Any unranked tree can be encoded as a binary tree.

Popular encoding: “firstChild/nextSibling” encoding.

The “firstChild” becomes the left pointer
The “nextSibling” becomes the right pointer

31

32

2. Binary Tree Encodings

Any unranked tree can be encoded as a binary tree.
Popular encoding: “firstChild/nextSibling” encoding.

The “firstChild” becomes the left pointer
The “nextSibling” becomes the right pointer

@0@ CPRCPRAY

2. Binary Tree Encodings

Any unranked tree can be encoded as a binary tree.

Popular encoding: “firstChild/nextSibling” encoding.

The “firstChild” becomes the left pointer
The “nextSibling” becomes the right pointer

33

34

2. Binary Tree Encodings

Any unranked tree can be encoded as a binary tree.

Popular encoding: “firstChild/nextSibling” encoding.
The “firstChild” becomes the left pointer
The “nextSibling” becomes the right pointer leFt @

35

Binary Tree Encodings

Any unranked tree can be encoded as a binary tree.

Popular encoding: “firstChild/nextSibling” encoding.

The “nextSibling” becomes the right pointer

Tt \?ht
left right
/ g

The “firstChild” becomes the left pointer @
le ri

)

Binary Tree Encodings

Any unranked tree can be encoded as a binary tree.

36

n-node “firstChild/nextSibling” encoding n-node
unranked tree ” binary tree
decoding
Questions

- Time overhead for simulating lastChild access,
on the binary encoding?

- Can you think of other binary tree encodings?

- How to simulate preceding-sibling?

Binary Tree Encodings

Any unranked tree can be encoded as a binary tree.

n-node “firstChild/nextSibling” encoding) n-node

unranked tree _ binary tree
decoding

37

Good Property of the firstChild/nextSibling encoding:

- XML types (e.g., DTD, XML Schema, Relax NG)

are preserved when going from unranked to binary (and vice versa).

38

Binary Tree Encodings

Any unranked tree can be encoded as a binary tree.

n-node “firstChild/nextSibling” encoding) n-node

unranked tree _ binary tree
decoding

Good Property of the firstChild/nextSibling encoding:

- XML types (e.g., DTD, XML Schema, Relax NG)
are preserved when going from unranked to binary (and vice versa).

LESSON 2 ... against memory hunger ...

- Use binary trees instead of unranked trees. (... or use efficient arrays)

+ Fast child-m access
- Expensive to update (insert/delete)

Tree Pointer Structures
Question

Give a datatype for binary trees which stores only non-NIL pointers.

Then, n-node tree: <n pointers

39

Type Node {
label : String,
left : Node,

right : Node
+

40
L1: no backward

3. Minimal Unique DAGS pointers
L2: use binary trees
or efficient arrays

Type Node {
label : Byte, binary tree
left : Node, 2 pointers per node

right : Node
+

Can we do with even less pointers?

41
L1: no backward

3. Minimal Unique DAGS pointers
L2: use binary trees
or efficient arrays

Type Node {
label : Byte, binary tree
left : Node, 2 pointers per node
right : Node

+

Can we do with even less pointers?

n-node tree: 2n pointers

left right
/\g

/\/\
/\ /\

a a C

N /\
/\/\

a aa a

3. Minimal Unique DAGs

Type Node {
label : Byte, binary tree
left - Node, 2 pointers per node
right : Node

+

Can we do with even less pointers?

n-node tree: 2n pointers YES! > Directed Acyclic Graph DAG

IefE//\\Ilght Iefg/p\\I;ght
/\/ﬂ\ ; .
/ \ / \ share \\
a ac identical d
/ \ / \ subtrees /)
DAVA G,

a aa a 3

42

43

3. Minimal Unique DAGs

Type Node {
label : Byte, binary tree
left : Node, 2 pointers per node
right : Node

+

Can we do with even less pointers?

n-node tree: 2n pointers YES! - Directed Acyclic Graph DAG

IefE/,\\Ilght Iefg/p\\I;ght
/\/w\ # N
/ \ / \ share \\
a ac identical d
/ \ / \ subtrees /)
DAVA .

a aa

18/19 pointers/nodes a 10/6 pointers/nodes @

3. Minimal Unique DAGs

A DAG representation of a tree has always
—> Less than or equal #nodes than the tree

—> Less than or equal #pointers than the tree.

44

45

3. Minimal Unique DAGs

Local optimizations

Consider the expression: a + a * (b -c) + (b -c¢c) *xd
Tree Directed acyclic graph

| +\ | /\
/+\ \) / :/*\l
/ \ r/ : \\/\
() Fd & / 0 e
_ / _/

3. Minimal Unique DAGs

Local optimizations

Common subexpressions (CSE)

e portion of expressions

e repeated multiple times

e computes same value

e can reuse previously computed value
Directed acyclic graph (DAG)

e prograin representation

e nodes can have multiple parents

e 10 cycles allowed

® cXposes comimon subexpressions
Building a DAG for an expression

e maintain hash table for leafs, expressions

its value number

e unique naime for each node

e rcuse nodes found in hash table

46

3. Minimal Unique DAGs

(minimal) DAGs have many applications!

- CSE (Common Subexpression Elimination)
for efficient evaluation of expressions
(do “term graph” rewriting, instead of term rewriting)

- Model checking with BDDs
Binary Decision Diagrams
for efficient evaluation of logic formulas

- Efficient XML query evaluation

47

3. Minimal Unique DAGs

(minimal) DAGs have many applications!

- CSE (Common Subexpression Elimination)
for efficient evaluation of expressions
(do “term graph” rewriting, instead of term rewriting)

- Model checking with BDDs
Binary Decision Diagrams
for efficient evaluation of logic formulas

- Efficient XML query evaluation

Btw, inside of a DAG, you have “referential completeness”
—> structural equality = equality of pointers ©

48

3. Minimal Unique DAGs

.. : :
—~>Every tree has a minimal, unique DAG! Ieft/C\fight
—->The DAG is at most exponentially d
smaller than the tree. N
C
—>Building the minimal unique DAG is easy! \\d
Can be done in (amortized) linear time. /)

C

C)

a

49

3. Minimal Unique DAGs

.. : :
—~>Every tree has a minimal, unique DAG! Ieft/C\fight
—->The DAG is at most exponentially d
smaller than the tree. N
C
—>Building the minimal unique DAG is easy! \\d

Can be done in (amortized) linear time. e
N >
How? C)

a

50

3. Minimal Unique DAGs

—~>Every tree has a minimal, unique DAG! cC .
Ieft/ \flght
—->The DAG is at most exponentially d
smaller than the tree. N
C
—>Building the minimal unique DAG is easy! \d
Can be done in (amortized) linear time.

D
\ C
How? < >

a

(even while parsing)
—>Build a hash table of all subtrees seen so far

(we don’t want to compare many trees, node by node, later on..)

51

Question Give a simple hash function that works for the tree above.

3. Minimal Unique DAGs

Hash Table HT
Hash function f

¥ N
c(a,a), c(c(a,a),a)
a(b,c)

a hash “bucket”

O 01 WN P

We want

- fdistributes trees uniformly into buckets
- testifatree Tisin HT, time O(size(T))

52

Question Give a simple hash function that works for the tree above.

Minimal Uniqgue DAGS

Example “Parse & DAGIfy”

1: startElement(c)

left right
/ \ hash | content

/\/\
/\ /\

a a C

7N /\
/\/\

a aa a

54

Minimal Uniqgue DAGS

1: bib [2,3,4,5]
2- book [6,7]

3: article [8,9]
4: book [10,11]
5: article [12,13]
6: author

7. title

8: author

9: title
10:price
11:title
12:price
13:title

<bib>
<book>
<author></author>
<title></title>
</book>
<article>
<author></author>
<title></title>
</article>
<book>
<price></price>
<title></title>
</book>
<article>
<price></price>
<title></title>
</article>
</book>

55

Minimal Uniqgue DAGS

1: bib [2,3,4,5]

2- book [6,7]

3: article [819]

4: book [10,11]

5: article [12,13]

6: author

7. title
—8-——author

9: title

10:price

11:title

12:price

13:title

<bib>
<book>
<author></author>
<title></title>
</book>
<article>
<author></author>
<title></title>
</article>
<book>
<price></price>
<title></title>
</book>
<article>
<price></price>
<title></title>
</article>
</book>

Minimal Uniqgue DAGS

- <bib>
1: bib [2,3,4,5] 6 <book>
2: book [6,7] /g‘j/ <author></author>
3- article |;8/ 77 <title></title>
7 </book>
4: book [10,341+ ¥ <article>
5: article [12,)1/3(] <author></author>
6: author </<t1i:gltla>§/tit|e>
- article
7: title <book>
—8—author_ <price></price>
—O=—¢title <title></title>
- </book>
1ijf'ce <article>
—+=tirtle— <price></price>
12:price <title></title>
—13=trtle— </article>

</book>

Minimal Uniqgue DAGS

- <bib>
1: bib [2,3,4,5] 6 <book>
2: book [6,7] / <author></author>
- = <title></title>
3: article [«8//9(17/7 </book>
4: book [10,31 articles
5: article [,)'IZb(] <author></author>
6: author \ <title></title>
- </article>
7: title 10 <book>
—8—author_ <price></price>
—O—¢ttle <title></title>
- </book>
1O'pf'ce <article>
—+i=trtle— <price></price>
—32=price— <title></title>
—43-title— </article>

</book>

Minimal Uniqgue DAGS

bib [2,3,4,5]
book [6,;;//9j
- article , 7
- book [10,;,1';57
. article [}Z,34]
- author
- title K\\lo
—8=—author_
—O=—t1rtle

10:price

~NOoO g wWNPE

g

K

minimal unique DAG
8 nodes (vs 13 nodes in the original tree)

<bib>
<book>
<author></author>
<title></title>
</book>
<article>
<author></author>
<title></title>
</article>
<book>
<price></price>
<title></title>
</book>
<article>
<price></price>
<title></title>
</article>
</book>

58

Minimal Uniqgue DAGS

Example “Parse & DAGIfy”

1: startElement(c)
2: startElement(c)

left right
/ \ hash | content

/\/\
/\ /\

a a C

7N /\
/\/\

a aa a

Minimal Uniqgue DAGS

Example “Parse & DAGIfy”

1: startElement(c)
2: startElement(c)
3: startElement(a)

left right
/ \ hash | content

/\/\
/\ /\

a a C

7N /\
/\/\

a aa a

61

Minimal Uniqgue DAGS

Example “Parse & DAGIfy”

- startElement(c)

- startElement(c)
- startElement(a) 1. pl=hashT.find(a)

> endElement(a) 2. 1T(p1l==NULL) { pl=new(*‘a-node”,NULL,NULL)
hashT.insert(pl) }

A WODNBE

A 4

left right
/ \ hash | content

/\/\
/\ /\

a a C

7N /\
/\/\

a aa a

62

Minimal Uniqgue DAGS

Example “Parse & DAGIfy”

1: startElement(c)
2: startElement(c)
3: startElement(a) 1. pl=hashT.find(a)
4: endElement(a) » 2. 1F(pl==NULL) { pl=new(“a-node” ,NULL,NULL)
hashT.insert(pl) }
Memory location pl
lef h
© t‘/ \'g t hash | content is a DAG with root
1 node a, and
/ \ / \ 5 1 child1-pointer=NULL
P child2-pointer=NULL
/ \ / \
a a C
/ \ / \
/ \ / N\

a aa a

63

Minimal Uniqgue DAGS

Example “Parse & DAGIfy”

1: startElement(c)

2: startElement(c)

3: startElement(a) 1. pl=hashT.find(a)

4: endElement(a) » 2. 1F(p1l==NULL) { pl=new(“a-node” ,NULL,NULL)
hashT.insert(pl) }

= must store children lists: [[1,[p1] 1

\

children of root node children of@ node
(so far, none) (so far, one

left C\lzight Memory location pl

hash | content is a DAG with root
d 1 / node a, and
/ \ 5 o child1-pointer=NULL
a child2-pointer=NULL
/ \ / \
a a C
/ \ / \
/ \ / N\

a aa a

Minimal Uniqgue DAGS

Example “Parse & DAGIfy”

- startElement(c)
- startElement(c)
- startElement(a)
- endElement(a)

- startElement(a)

a b~ wWwNPEk

left right
/ \ hash | content

/\/\ 5 o1
/\ /\

a a C

7N /\
/\/\

a aa a

65

Minimal Uniqgue DAGS

Example “Parse & DAGIfy”

1: startElement(c)
2: startElement(c)
3: startElement(a)
4: endElement(a)
5: startElement(a) 1. p2=hashT.find(a)
6: endElement(a) » 2. if(p2==NULL) { p2=new(*““a-node”,NULL,NULL)
hashT.insert(p2) }
left right
/\ hash | content
1

'//\\ // \\\ 2 pl

/\ /\

a a C

/\ /\
/\/\

a aa a

66

Minimal Uniqgue DAGS

Example “Parse & DAGIfy”

1: startElement(c)
2: startElement(c)
3: startElement(a)
4: endElement(a)
5: startElement(a) 1. p2=hashT.find(a)=pl
6: endElement(a) » 2. i F(p2==NULL)—fp2=rnewa=node™ 5 NotiNItt)-
e B e P S P e e
left right
/\ hash | content
1

'//\\ // \\\ 2 pl

/\ /\

a a C

/\ /\
/\/\

a aa a

67

Minimal Uniqgue DAGS

Example “Parse & DAGIfy”

1: startElement(c)

2: startElement(c)

3: startElement(a)

4: endElement(a)

5: startElement(a) 1 p2=hashl Tind(o) 11

6: endElement(a) » 2. i1 F(p2==NULL)—fp2=new a=—node*sNot—NotH)
—hashi—nseri e r——

=>» store children lists: [[1,[p1,p1]]

Ieft‘/ \flght hash | content
/\ i \ =
/\ / \
a adc
/ \ / N
/ \ / AN

a aa a

Minimal Uniqgue DAGS

Example “Parse & DAGIfy”

- startElement(c)
- startElement(c)
- startElement(a)
- endElement(a)
- startElement(a)
- endElement(a)
- endElement(c)

~N~NOoO Ooah~WDNEPR

=>» store children lists: [[1,[p1,p1]]

Ieft‘/ \flght hash | content
/\ i \ =
/\ / \
a adc
/ \ / N
/ \ / AN

a aa a

68

Minimal Uniqgue DAGS

Example “Parse & DAGIfy”

69

1: startElement(c) c

2: startElement(c) plg’:>pl

3: startElement(a) a

4: endElement(a)

5: startElement(a) 1

6: endElement(a) 1. p=hashT.find(a) \

7: endElement(c) » 2. 1T(p==NULL) { p=new(**‘c-node”’,pl,pl)
hashT.insert(p) ¥}

=>» store children lists: [[1,[p1,p1]]
|

=» use children list!!

left right .
/ \ J hash | content Memory location p
1 is a DAG with root
,//\\ node c, and
/ \ 2 Pl child1-pointer=p1
/ \ / \ child2-pointer=p1
a acC -
20201
/ \ / \, g
/ \ / N

a aa a

Minimal Uniqgue DAGS

Example “Parse & DAGIfy”

- startElement(c)

> startElement(c) plg’:>p1
- startElement(a)

- endElement(a)

70

- startElement(a) 1

- endElement(a) 1. p=hashT.find(a) \

2. 1f(p==NULL) { p=new(“c-node”,pl,pl)
hashT.insert(p) }

~N~NOoO Ooah~WDNEPR

A 4

- endElement(c)

> store children lists: [[],[p>1] 1 €now update!!

left right addp (as last) -
‘/ \ ° hash | content Memory location p
1 is a DAG with root
,//\\ node c, and
/ \ 2 Pl child1-pointer=p1
/ \ / \) child2-pointer=p1
a a C -
20201
/ \ / \, g
/ \ / N

a aa a

Minimal Uniqgue DAGS

71

Example “Parse & DAGIfy" New children lists: [[p] 1

1: startElement(c) :

2: startElement(c) children of root node

3: startElement(a) (so far, one)

4: endElement(a)

5: startElement(a)

6: endElement(a) 1. p=hashT.find(a)

7: endElement(c) » 2. 1T(p==NULL) { p=new(‘“‘c-node”’,pl,pl)
hashT.insert(p) }

> store children lists: [[],[p>1] 1 €now update!!

left right add p (as last) .
‘/ \ ° hash | content Memory location p
1 is a DAG with root
,//\\ node c, and
/ \ 2 Pl child1-pointer=p1
/ \ / \) child2-pointer=p1
a a C -
20201
/ \ / \, g
/ \ / N

a aa a

Minimal Uniqgue DAGS

Example “Parse & DAGIfy" New children lists: [[p] 1

;; 2:2::5:2222:%g; children of root node

3: startElement(a) (so far, one)

4: endElement(a)

5: startElement(a)

6: endElement(a) 1. p=hashT.find(a)

7: endElement(c) » 2. 1T(p==NULL) { p=new(*‘c-node”,pl,pl)
hashT.insert(p) }

hash | content

2> Assume - 100 element names

1

2 pl Example hash function:

) (#elementName
20201 p + 100 * #elementName(1st child)

+ 100 * 100 * #elemNa(2" child)
+ 100”3 * elemNa(1st child of 1st ch.)
+ ..) MOD sizeOf(hashT)

Minimal Uniqgue DAGS

C .
- DOM interfact to the DAG? Ieft/ \f('jght
parentNode / p&nsibling as before N
C
- Updates can be expensive (copying!) \\d
<C>)
a

How to attach attribute & text nodes to the DAG?

73

Minimal Uniqgue DAGS

C .
- DOM interfact to the DAG? Ieft/ \f('jght
parentNode / p&nsibling as before N
C
- Updates can be expensive (copying!) \\d
<C>)
a

How to attach attribute & text nodes to the DAG?

—> Store them seperately in a table.

Index by e.g., Node number (in doc-order)
or number of atr/text nodes

Store index in each DAG node / or compute it online. (pre-traversal)

74

75

Minimal Uniqgue DAGS

What about unranked, vs binary DAGs?

Ieft/ \flght
_ \
C
N
(ool book) :
<C>)
a
More precisely,
What about size of minimal-unique-unranked-DAG(Tree)

vs size of minimal-unique-binary-DAG(fCnS-enc(Tree))

/

firstChild/nextSibling

Minimal Uniqgue DAGS

size of minimal-unique-unranked-DAG(Tree)
vs size of minimal-unique-binary-DAG(fCnS-enc(Tree))

Questions
Give a tree for which first is smaller than the second.

Give a tree for which the second is smaller than the first.

76

Unranked vs Binary Trees

18/19
a a
PN N ‘6
P P P P P P .
AN A /N /N /N MinDAG /p\
NS NS NS NS NS NS n s

3/4

77

a

/ -

p—p—pP—pP—P—Pp Min. DAG
Y A VA

Nn-S N—-S N—-S N-S N-S N-S

Unranked vs Binary Trees

18/19
a a
PN N ‘6
P P P P P P .
AN A /N /N /N MinDAG /p\
NS NS NS NS NS NS n s

78

3/4

Can it be vica versa? (min bin. DAG is smaller)

YES!

u
- Has 18 edges p/ D \p

) SN S N
- DAG of bin.coding only 12 edges Xbcbc ybcbc zbcbc

DAG compression is sensible to rank/unrankedness!

Unranked vs Binary Trees

Last comment on binary tree encodings / DAGs

YES: the binary trees become very “regular” (deep, to the right)”

Items (books/addresses/etc)

12 . \ 50
rrrrrrrrr+r++rr+rrtrrrrrrrrrrrol

ltems (books/addresses/etc)

C= D))

ltems (books/addresses/etc)

DAG w. ‘ 50 50\ B|nI t.re;.e w
multiplicities multiplicities

DAG

79

3. Minimal Unique DAGs

Input file size of tree min. binary min. unranked BFLEX
DAG size mDAG size output size

SwissProt (457.4 MEB) 10,903,568 | 1437445 | 132% | 1,100,648 | 10.1% | 311,328 2 9%
DBLP (103.6 MB) 2.611,931 533,183 | 20.4% 222 754 8.5% | 115,902 4 4%
Treebank (55.8 MB) 2447727 | 1454494 | 594% | 1,301,688 | 53.2% | 519,542 | 21.2%
1998statistics (657 KB) 28,306 2403 8.5% 726 2 6% 410 1.4%
catalog-02 (104M) 2,240 231 52,392 2.3% 32 267 1.4% 26,774 1.2%
catalog-01 (11M) 225,194 6,990 3.1% 8,503 2.8% 3,817 1.7%
dictionary-02 (104M) 2731764 681,130 | 24 9% 441,322 | 16.2% | 160,329 5.9%
dictionary-01 (11M) 277,072 77,554 | 28.0% 46,993 | 17.0% 20,150 7.3%
JST_snp.chr1 (36M) 655,946 40,663 65.2% 25,047 2.3% 12,858 1.8%
JST gene.chrl (1T1M) 216,401 14,606 6.7% 5,658 2 6% 4.000 1.8%
NCEIl_snp.chr1 (190M) 3,642 225 809,394 | 22.2% 15 | =0.1% 59 | =0.1%
NCEl_gene.chr1 (24M) 360,350 14,356 4 0% 11,767 3.3% 7,160 2.0%

80

“Efficient XML” & Binary XML

W3C working groups

- Efficient XML Interchange Working Group (EXI)
http://www.w3.0rg/XML/ZEX1/

- XML Binary Characterization Working Group
http://www.w3.0org/XML/Binary/

81

The Figure on the next slide is from the “EXI Measurement Note”
-- new version of the note came out 25 July 2007...1)

2 June 2006

Notional EXI Test Corpus & Measurement Overview

Motivation: define consistent EXI terminology for diverse document sets and measurement algorithms

XMLPar5|r[> | Deseralizat

Test corpus preprocessing |[0r1> Encoding
SAX event
store
Parse XML API l BT T
Algorithms
Build test corpus, XML In-memary
XML checks, Document, _ data = N EX| encoding
use-case coverage, Text o S':X or " structures, o Grasrr:r?.art.bala'ad of XML
Btc. Encoding ypec-even full or block alistiea
interfaces Other options?
one or more also handles streaming Measurerment asymmetric binary blob
namespaces from. to disk or netwark endpeint, in CPU performance Y
EXI-XML AP IR
Comparison gonthms
- XKML In-memory
Confirm proper Post-checks: i
round-trip |- well formed, DDC.I.UF;E”L -+ SAX or -~ d;ta Lookup tables EXI ?;iﬁﬁmg
conversion valid outputs E Ed' typed-event fS ITU Erlesii Computational o
of original neoding interfaces ull ar bloc Other options?
document (thd)
Round-trip document postprocessing Data binding Serialization Decoding
EX| documents Various document Measurement Japex Event-store Contributed encoders Results
test corpus validity checkers endpoints framework array +Japex drivers archive

Minimal Uniqgue DAGS

Assignment 2 build a minimal DAG for a tree (given in XML)

For simplicity, ignore attributes and text values.
—> only consider element nodes.

Build the DAG, while parsing the XML!

Construct a hash table which stores
all (complete) distinct subtrees seen so far.

83

Cleary, we do not want to parse into DOM, and then pull things out of there.

Instead, we need a more flexible parser that gives as the
freedom of what exactly to store, and how.

How to use SAX

Remember one of the promises of XML...

You never need to write a parser again!

84

How to use SAX

Remember one of the promises of XML...

You never need to write a parser again!

85

... but, of course if you want to build up your own (e.g. memory-efficient)
data structure, you need to “talk” to the parser.

You want to tell the parser:

Give me low level access to the data:
- Bracket by bracket,
- text-node by text-node.

In “document order”.

How to use SAX

Remember one of the promises of XML...

You never need to write a parser again!

86

... but, of course if you want to build up your own (e.g. memory-efficient)
data structure, you need to “talk” to the parser.

You want to tell the parser:

Give me low level access to the data:
- Bracket by bracket,
- text-node by text-node.

In “document order”.

= SAX

"
SAX—Simple APl for XML

@ SAX’ (Simple API for XML) is, unlike DOM, not a W3C standard,
but has been developed jointly by members of the XML-DEV mailing
list (ca. 1998).

@ SAX processors use constant space, regardless of the XML input
document size.

» Communication between the SAX processor and the backend XML
application does not involve an intermediate tree data structure.

» |nstead, the SAX parser sends events to the application whenever a
certain piece of XML text has been recognized (i.e., parsed).

» The backend acts on/ignores events by populating a callback
function table.

"http://www.saxproject.org/

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 83

]
Sketch of SAX’'s mode of operations

startElement!. _ _ callback table
- ~—
/ -~ startElement ()
/ B —characters!
;-

~

XML

Application

. SAX
@

@ A SAX processor reads its input document sequentially and once
only.

@ No memory of what the parser has seen so far Is retained while
parsing. As soon as a @ significant bit of XML text has been
recognized, an event Is sent.

@ The application Is able to act on events in parallel with the parsing

DIrOgress.
Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 84

SAX Events

@ To meet the constant memory space requirement, SAX reports
fine-grained parsing events for a document:

Event ...reported when seen Parameters sent
startDocument <?xml...?7>°

endDocument (EOQF)

startElement <t a1=Vi...an=Vp> t, (a1, v1),...,(an, Vo)
endElement </t> t

characters text content Unicode buffer ptr, length
comment <l--c--> C

processinglnstruction <7t pi?> t, pi

®N.B.: Event startDocument is sent even if the optional XML text declaration
should be missing.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

85

o~ & R W N =

<7xml encoding="utf-8"7> x;
<bubbles> x>
<!-- Dilbert looks stunned —--> %3
<bubble speaker="phb" to="dilbert"> x4
Tell the truth, but do it in your usual engineering way

dilbert.xml

so that no one understands you. *s5
</bubble> *6
</bubbles> x7 x*g

Event® 10 Parameters sent
*1 startDocument
*0 startElement t = "bubbles"
*3 comment ¢ = "_Dilbert looks stunned."
x4 startElement t = "bubble", ("speaker","phb"), ("to","dilbert")
*5 characters buf = "Tell the...understands you.", len = 99
*6 endElement t = "bubble"
*7 endElement t = "bubbles"
*g endDocument
?Events are reported in document reading order 1, %o, ..., *s.

'°N..B.: Some events suppressed (white space).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06

86

SAX Callbacks

@ To provide an efficient and tight coupling between the SAX
frontend and the application backend, the SAX APl employs
function callbacks:!!

© Before parsing starts, the application registers function references in
a table in which each event has its own slot:

Event Callback Event Callback
startElement ? — = startElement startElement ()
endElement ? SAXregister (startElement, op i jement endElement ()
startElement ())
SAX register(endElement,
endElement ())

© The application alone decides on the implementation of the functions
it registers with the SAX parser.

© Reporting an event x; then amounts to call the function (with
parameters) registered in the appropriate table slot.

1'Much like in event-based GUI libraries.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 87

SAX Callbacks

?? Java SAX API

In Java, populating the callback table is done via implementation of the
SAX ContentHandler Interface: a ContentHandler object represents
the callback table, its methods (e.g., public void endDocument ())
represent the table slots.

Example: Reimplement content.cc shown earlier for DOM (find all XML

text nodes and print their content) using SAX (pseudo code):
content (File f)

print Text ((Unicode) buf, Int len)

// register the callback,

Int i;
// we ignore all other events -
SAXregister (characters, print Text): foreach / € 1.../en do
SAXparse (f); L print (bufli]);
return: return;

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 88

SAX and the XML Tree Structure

@ Looking closer, the order of SAX events reported for a document is

determined by a preorder traversal of its document treel?:
*1 DTC*m
«, Elem,
Sample XML document 2 EMlx1s™
1 *1 x
2 <a>xp b- Elemts Comment lem*M -----
3 %3 fooxg xg
4 <!--sample-->xq 7{ X
5 <c>xy wq lext "sample“ «gElem, ,~d «;; Elem,, e
6 <d>xg barxg </d>x1g
7 <e>*q11 baZt12 </e>t13 J’,
8 <fc>x14 "foo" xg lext «1o l€Xt
9 t15 *16 : ;
"'bag-rll "bél.Z"

N.B.: An Elem [Doc| node is associated with two SAX events, namely startElement

and endElement [startDocument, endDocument].

12Sequences of sibling Char nodes have been collapsed into a single Text node.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2005/06 89

/\ Deadline: 6t April

For Assignment 2, you only need to register
startElement and endElement.

In that way, you automatically receive only element nodes..

94

Of course you can use SAX for other things than building up
a data structure.

E.Q.

- answer path queries while parsing (on a “stream”)
(low memory consumption!)

END
Lecture 2

