XML and Databases

Lecture 5 XML Validation using Automata

Sebastian Maneth NICTA and UNSW

CSE@UNSW -- Semester 1, 2009

Outline

- 1. Recap: deterministic Reg Expr's / Glushkov Automaton
- 2. Complexity of DTD validation
- 3. Beyond DTDs: XML Schema and RELAX NG
- 4. Static Methods, based on Tree Automata

Previous Lecture

XML type definition languages

want to specify a certain subset of XML doc's = a "type" of XML documents

Remember

The specification/type definition should be **simple**, so that

- \rightarrow a *validator* can be built automatically (and efficiently)
- \rightarrow the *validator* runs efficient on any XML input

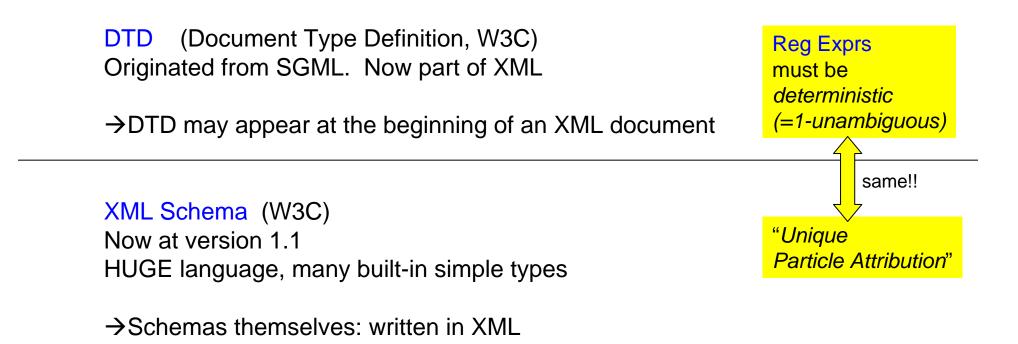
(similar demands as for a *parser*)

→ Type def. language must be SIMPLE!

(similarly: parser generators use EBNF or smaller subclasses: LL / LR)

O(n^3) parsing

XML Type Definition Languages



See the "Schema Primer" at <u>http://www.w3.org/TR/xml schema-0/</u>

RELAX NG (Oasis) For tree structure definition, more powerful than Schemas&DTDs

XML Type Definition Languages

DTD (Document Type Definition)

<!DOCTYPE root-element [doctype declaration ...]>

<! ELEMENT el ement-name content-model >

content-model s

- EMTPY
- ANY
- (#PCDATA | elem-name_1 | ... | elem-name_n)*
- deterministic Reg Expr over element names

<! ATTLIST element-name attr-name attr-type attr-default ...>

Types: CDATA, (v1|..), ID, IDREFs Defaults: #REQUIRED, #IMPLIED, "value", #FIXED

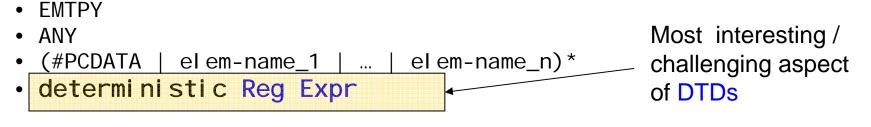
XML Type Definition Languages

DTD (Document Type Definition)

<!DOCTYPE root-element [doctype declaration ...]>

<! ELEMENT el ement-name content-model >

content-model s



<! ATTLIST element-name attr-name attr-type attr-default ..>

Types: CDATA, (v1|..), ID, IDREFs Defaults: #REQUIRED, #IMPLIED, "value", #FIXED

In order to check whether a (large) document is **valid** wrt to a given DTD ("it validates") you need to

 \rightarrow check if children lists match the given Reg Expr's

This can be done *efficiently*, using **finite-automata (FAs)**!

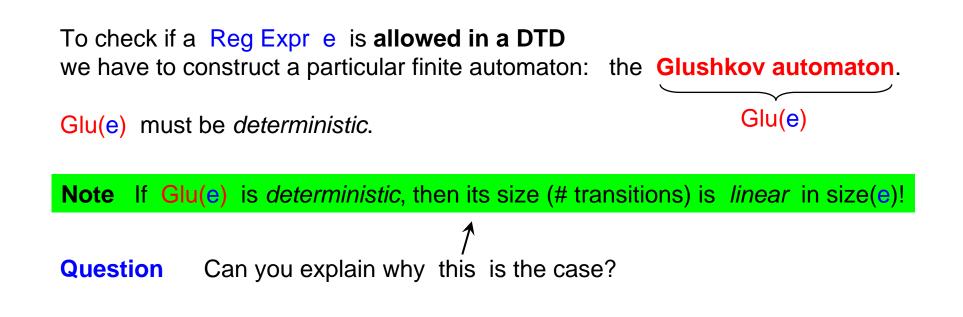
To check if a Reg Expr e is allowed in a DTD we have to construct a particular finite automaton:	the Glushkov automaton .
Glu(e) must be <i>deterministic</i> .	Glu(e)

Note If **Glu(e)** is *deterministic*, then its size (# transitions) is *linear* in size(e)!

In order to check whether a (large) document is **valid** wrt to a given DTD ("it validates") you need to

 \rightarrow check if children lists match the given Reg Expr's

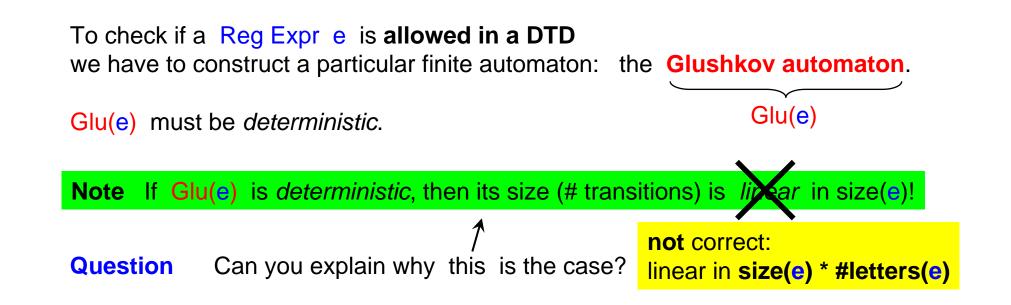
This can be done *efficiently*, using **finite-automata (FAs)**!



In order to check whether a (large) document is **valid** wrt to a given DTD ("it validates") you need to

 \rightarrow check if children lists match the given Reg Expr's

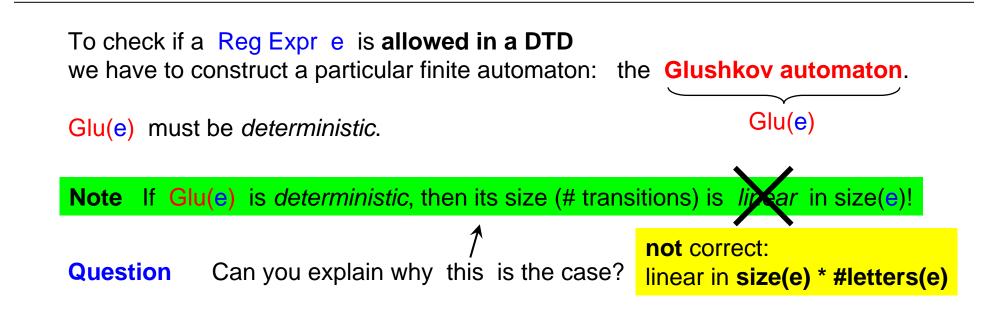
This can be done *efficiently*, using **finite-automata (FAs)**!

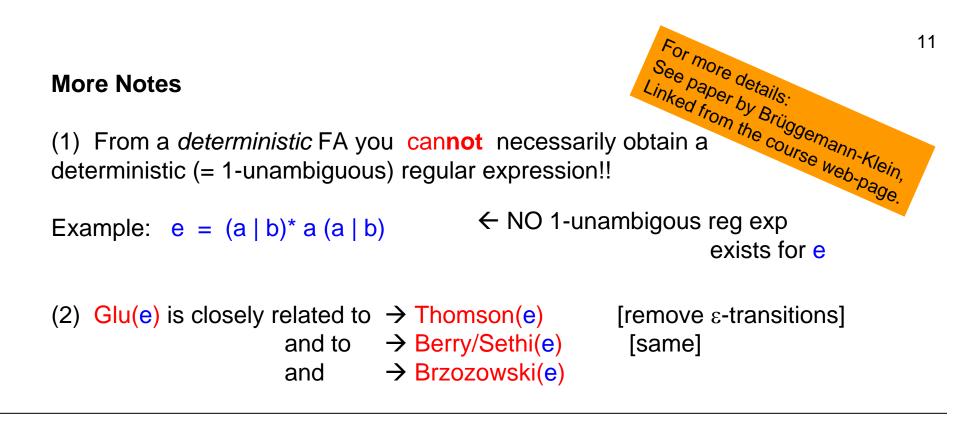


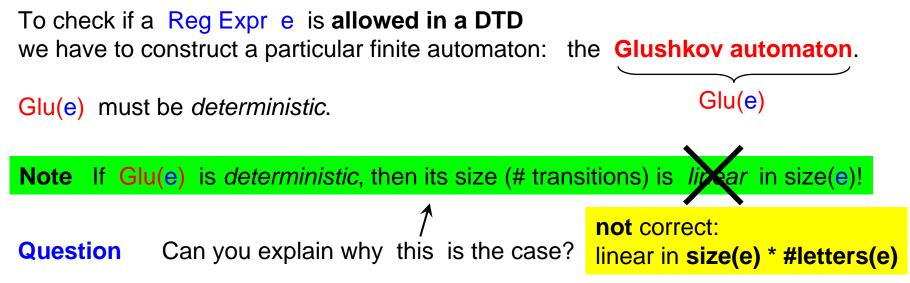
More Notes

(1) From a *deterministic* FA you cannot necessarily obtain a deterministic (= 1-unambiguous) regular expression!!

```
Example: e = (a | b)^* a (a | b) 
 \leftarrow NO 1-unambigous reg exp exists for e
```







Each letter-position in the Reg Expr e becomes one state of Glu; plus, Glu has one extra begin state.

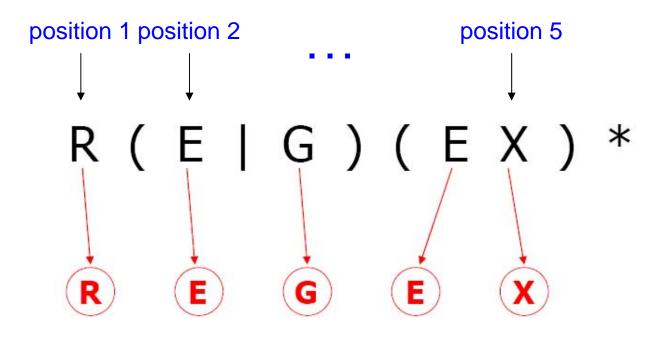
FIRST(e) = all possible begin positions of words matching e

e.g. FIRST(R (E | G) (EX)*) = { R_1 }

R (E | G) (E X) *

Following slides from: http://www.cs.ut.ee/~varmo/tday-rouge/tammeoja-slides.pdf

Character in RE = state in automaton



Character in RE = state in automaton
 + one state for the beginning of the RE

R (E | G) (EX) *

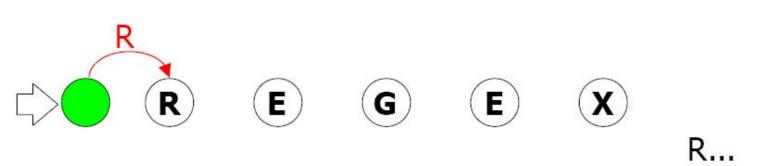
- Character in RE = state in automaton
 + one state for the beginning of the RE
- Transitions show which characters/positions can precede each other

R (E | G) (E X) *

 $\begin{array}{c|c} \hline & R \\ \hline & E \\ \hline & G \\ \hline & E \\ \hline & R \\ \hline & R \\ \hline \\ & R \\ \end{array}$

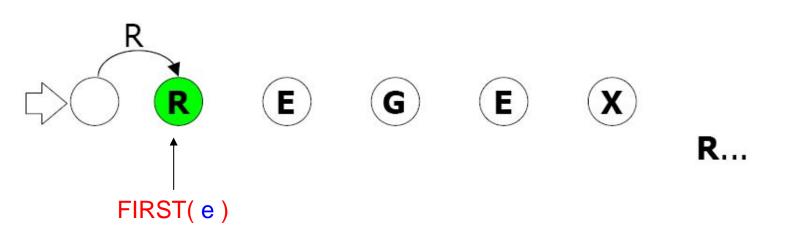
- Character in RE = state in automaton
 + one state for the beginning of the RE
- Transitions show which characters/positions can precede each other

R (E | G) (E X) *



- Character in RE = state in automaton
 + one state for the beginning of the RE
- Transitions show which characters/positions can precede each other

R (E | G) (E X) *



Each position in the Reg Expr e becomes one state of G; plus, G has one extra begin state.

FIRST(e) = all possible begin positions of words matching e

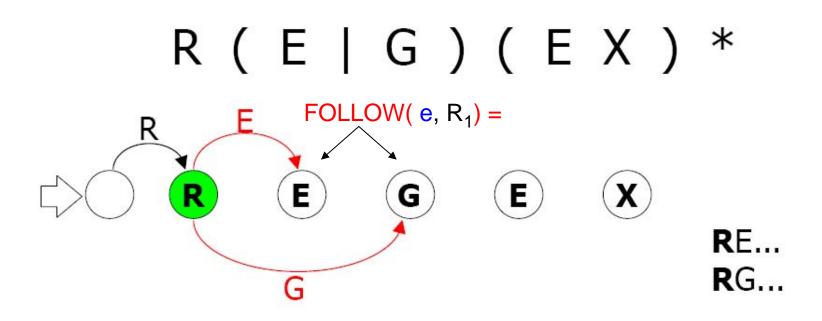
e.g. FIRST(R (E | G) (EX)*) = { R_1 }

FOLLOW(e, x) = all possible positions following position x in e

e.g. FOLLOW(R (E | G) (EX)*, R_1) = { E_2, G_3 }

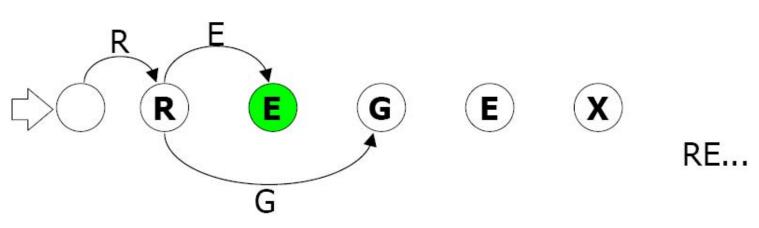
→ From state " R_1 ": add E-transition to E_2 G-transition to G_3

- Character in RE = state in automaton
 + one state for the beginning of the RE
- Transitions show which characters/positions can precede each other

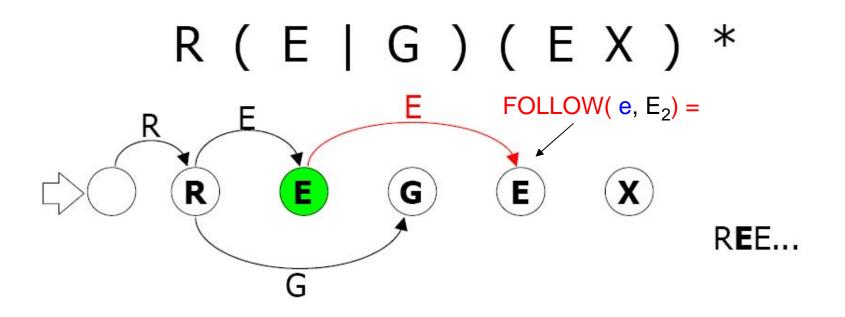


- Character in RE = state in automaton
 + one state for the beginning of the RE
- Transitions show which characters/positions can precede each other

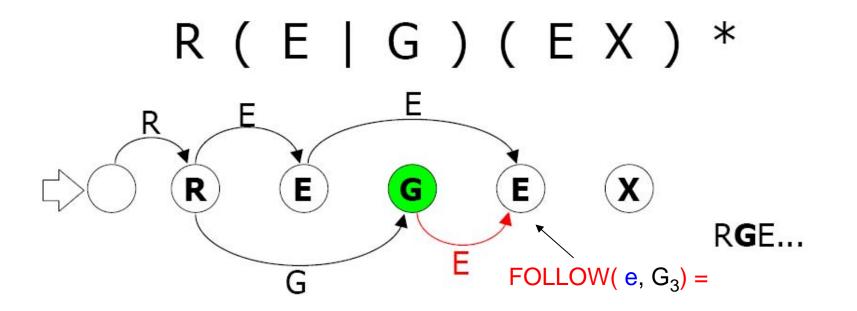
R (E | G) (E X) *



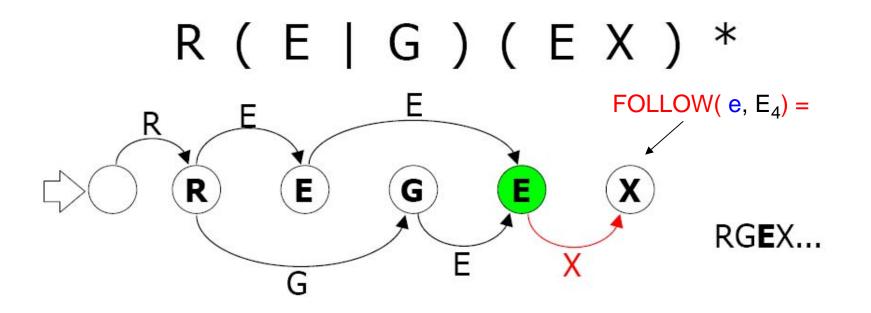
- Character in RE = state in automaton
 + one state for the beginning of the RE
- Transitions show which characters/positions can precede each other



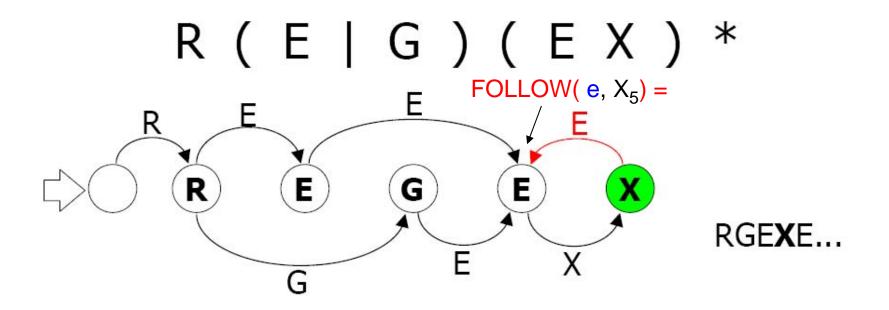
- Character in RE = state in automaton
 + one state for the beginning of the RE
- Transitions show which characters/positions can precede each other



- Character in RE = state in automaton
 + one state for the beginning of the RE
- Transitions show which characters/positions can precede each other



- Character in RE = state in automaton
 + one state for the beginning of the RE
- Transitions show which characters/positions can precede each other



Each position in the Reg Expr e becomes one state of G; plus, G has one extra begin state.

FIRST(e) = all possible begin positions of words matching e

e.g. FIRST(R (E | G) (EX)*) = { R_1 }

FOLLOW(e, x) = all possible positions following position x in e

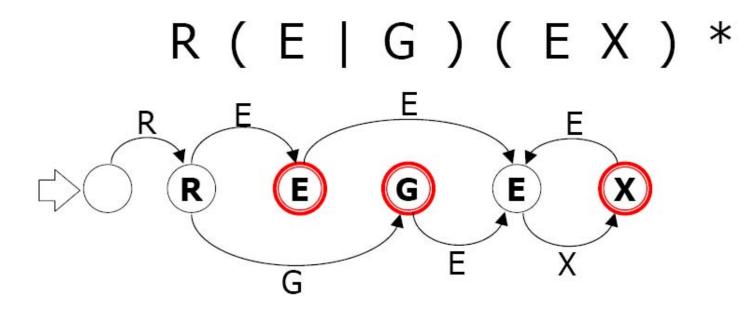
e.g. FOLLOW(R (E | G) (EX)*, R_1) = { E_2, G_3 }

→ From state " R_1 ": add E-transition to E_2 G-transition to G_3

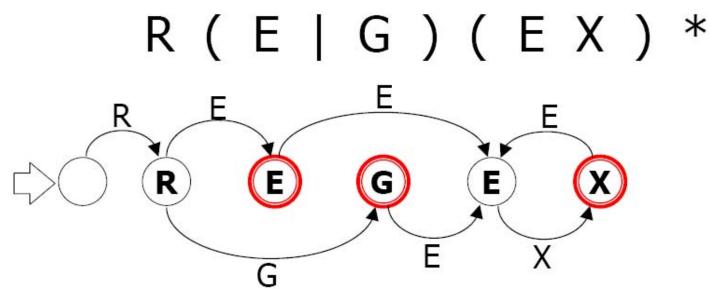
LAST(e) = all possible *end* positions of words matching e

e.g. LAST(R (E | G) (EX)*) = { E_2, G_3, X_5 }

- Character in RE = state in automaton
 + one state for the beginning of the RE
- Transitions show which characters/positions can precede each other



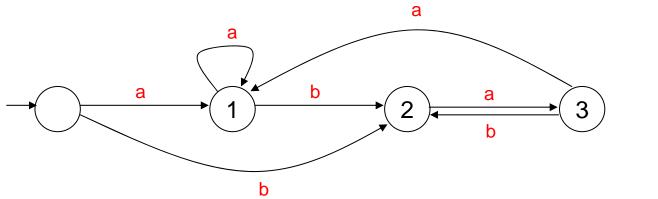
- Character in RE = state in automaton
 + one state for the beginning of the RE
- Transitions show which characters/positions can precede each other



Is this automaton *deterministic*??

Another example

(a* | ba)*



Which of these is deterministic?

- \rightarrow (ab) | (ac)
- \rightarrow a (b | c)
- \rightarrow a(a | b)*ac

Each position in the Reg Expr e becomes one state of G; plus, G has one extra begin state.

FIRST(e) = all possible *begin* positions of words matching e

e.g. **FIRST(** R (E | G) (EX)*) = { R_1 }

FOLLOW(e, x) = all possible positions following position x in e

LAST(e) = all possible end positions of words matching e

Naïve implementation: $O(n^3)$ time, where n = size(e)

(for each position: computing FOLLOW goes through every position at each step, needs to compute $union \rightarrow O(n^*n^*n)$)

Each position in the Reg Expr e becomes one state of G; plus, G has one extra begin state.

FIRST(e) = all possible *begin* positions of words matching e

e.g. **FIRST(** R (E | G) (EX)*) = { R_1 }

FOLLOW(e, x) = all possible positions following position x in e

LAST(e) = all possible end positions of words matching e

Naïve implementation: $O(n^3)$ time, where n = size(e)

(for each position: computing FOLLOW goes through every position at each step, needs to compute *union* \rightarrow O(n*n*n) Not really needed. Can be improved to O(n^2)

Each position in the Reg Expr e becomes one state of G; plus, G has one extra begin state.

FIRST(e) = all possible *begin* positions of words matching e

e.g. **FIRST(** R (E | G) (EX)*) = { R_1 }

FOLLOW(e, x) = all possible positions following position x in e

LAST(e) = all possible end positions of words matching e

Naïve implementation: $O(n^3)$ time, where n = size(e)

(for each position: computing FOLLOW goes through every position at each step, needs to compute union \rightarrow O(n*n*n) Can be improved to O(size(e) + size(G(e))) Not really needed. Can be improved to O(n^2)

Can be improved to

O(size(e) + size(G(e)))

Note If G(e) is *deterministic*, then its size (# transitions) is *quadratic* in size(e)!

Linear in size(e) * #letters(e), if G(e) is deterministic!

 \rightarrow O(size(e) * #letters(e))

Naïve implementation: $O(n^3)$ time, where n = size(e)

(for each position: computing FOLLOW goes through every position at each step, needs to compute $union \rightarrow O(n^*n^*n)$)

Not really needed. Can be improved to O(n^2)

To avoid these expensive running times

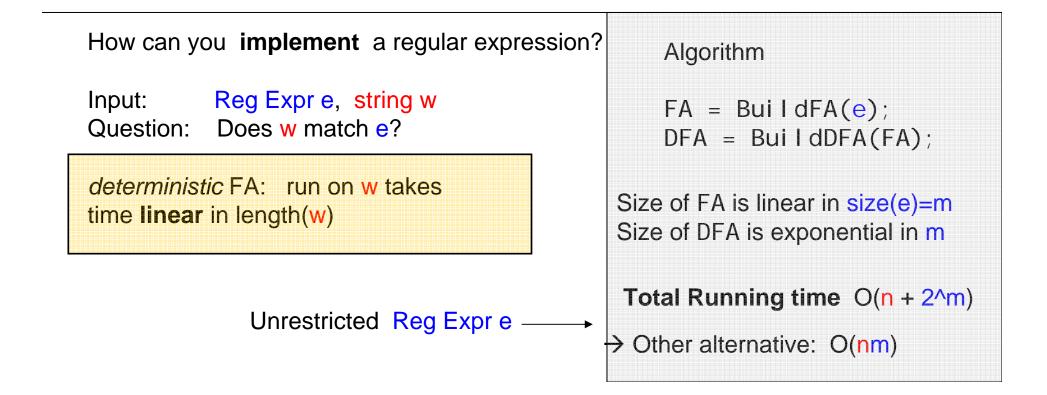
DTD requires that FA=G(e) must be *deterministic*!

```
n = length(w)
m = size(e)
```

```
Total Running time O(n + m)
```

If s = #letters(e) is assumed fixed
(not part of the input)

Otherwise: O(n + ms)



Deterministic (1-unambiguous) content models give rise to *efficient matching algorithms*.

(they avoid O(nm) or O(n+2^m) complexities)

Disadvantages

- \rightarrow Hard to know whether given reg expr is OK (deterministic)
- \rightarrow Det. reg exprs are NOT closed under union. (not so nice..)

Hint: find det. reg. exprs. e1 and e2 such that their union is equal to (a | b)* a (a | b)

Now that we know how the check all the different content-models (in particular det. Reg Expr's) how to build full validator for a DTD?

elem-name_1 \rightarrow RegExpr_1 elem-name_2 \rightarrow RegExpr_2 ... elem-name_k \rightarrow RegExpr_k

Automata A_1, A_2, ..., A_k

The Validation Problem

Given a DTD T and a document D, is D valid wrt T?

Top-Down Implementation

→ at element node w. label elem-name_i, run automaton A_i

- \rightarrow check attribute constraints
- → check ID/IDREF constraints

(Given A_1, A_2, ..., A_k)

Total Running time

linear in the sum of sizes of the DTD and the document. O(size(T) + size(D))

DTDs have the

"label-guarded subtree exchange" property:

- t1, t2 trees in a DTD language T
- v1 node in t1, labeled "lab"
- v2 node in t2, labeled "lab"

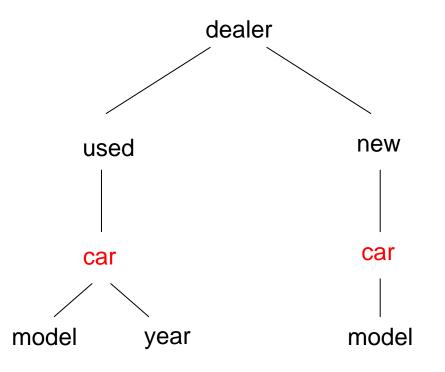
trees obtained by exchanging the subtrees rooted at v1 and v2 are also in T

aka "local"
→ content model
only depends on
label of parent

t1 v1 v2 v2 lab

Beyond DTDs

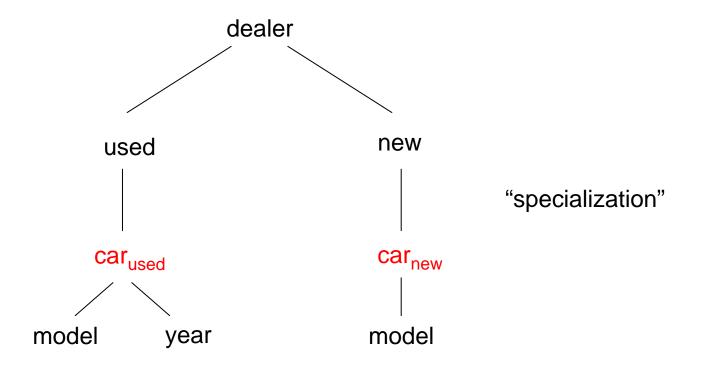
Often, the expressive power of DTDs is *not sufficient*. **Problem** each element name has precisely one content-model in a DTD. Would like to distuingish, depending on the context (parent).



car has different structure, in different contexts.

Beyond DTDs

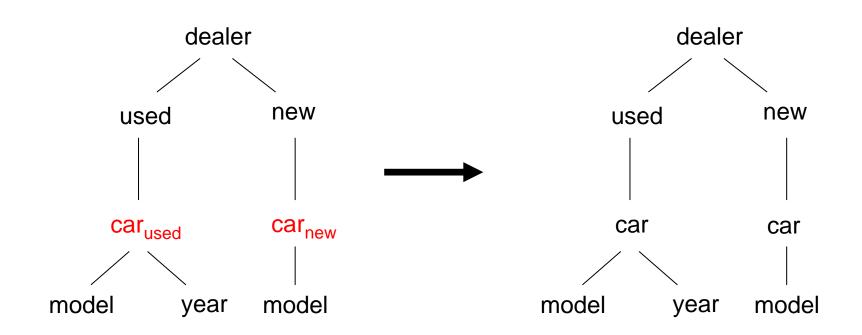
Often, the expressive power of DTDs is *not sufficient*. **Problem** each element name has precisely one content-model in a DTD. Would like to distuingish, depending on the context (parent).

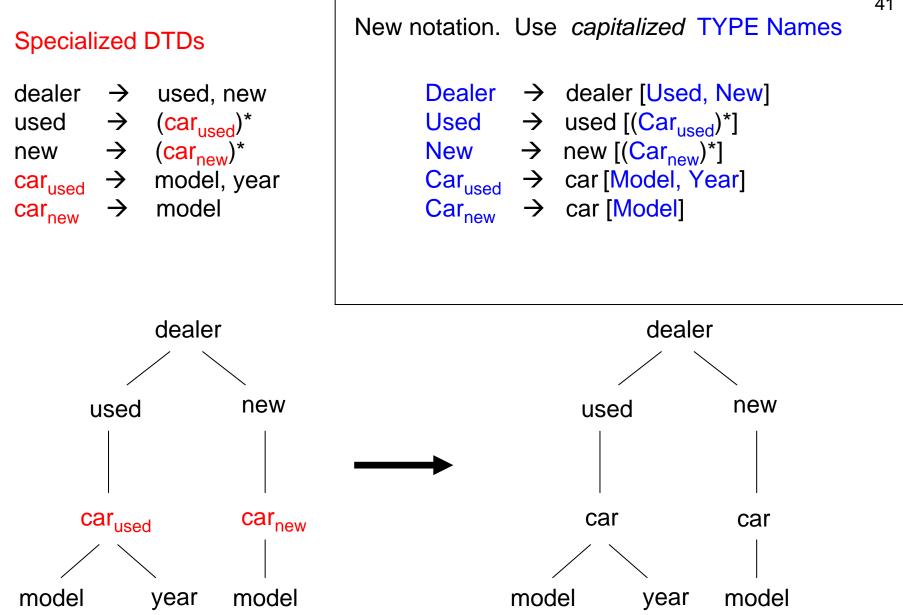


car has different structure, in different contexts.

Specialized DTDs

 $\begin{array}{rrrr} \text{dealer} & \rightarrow & \text{used, new} \\ \text{used} & \rightarrow & (\text{car}_{\text{used}})^* \\ \text{new} & \rightarrow & (\text{car}_{\text{new}})^* \\ \text{car}_{\text{used}} & \rightarrow & \text{model, year} \\ \text{car}_{\text{new}} & \rightarrow & \text{model} \end{array}$





Dealer	\rightarrow	dealer [Used, New]
Used	\rightarrow	used [(<mark>Car_{used})*</mark>]
New	\rightarrow	new [(Car _{new})*]
Car _{used}	\rightarrow	car [Model, Year] car [Model]
Carnew	\rightarrow	car [Model]

Let us call this new concept a "grammar".

the "local" restriction

A grammar G is **local**, if for any label[RegExpr_1], label[RegExpr_2] present in G it holds that RegExpr_1 = RegExpr_2.

By definition: Every DTD is a local grammar, and vice versa.

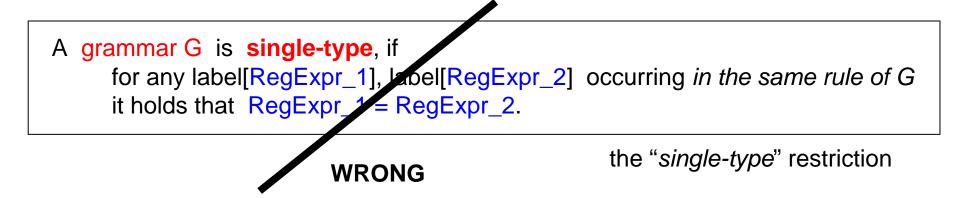
Dealer	\rightarrow	dealer [Used, New]
Used	\rightarrow	used [(Car _{used})*]
New	\rightarrow	new [(Car _{new})*]
Car _{used}	\rightarrow	car [Model, Year] car [Model]
Car _{new}	\rightarrow	car [Model]

Let us call this new concept a "grammar".

the "local" restriction

A grammar G is local, if for any label[RegExpr_1], label[RegExpr_2] present in G it holds that RegExpr_1 = RegExpr_2.

By definition: Every DTD is a local grammar, and vice versa.



Alternatively:

Call two TYPE Names T1 and T2 "competing" if they have the same element name (but not identical rules)

Classes of Grammars

local no competing TYPE names! (DTDs)

single-type TYPE names in the *same content model* do not compete!

(XML Schema's)

regular no restriction... (RELAX NG)

Question Are there single-type grammars (XML Schemas) which cannot be expressed by local grammars (DTDs).

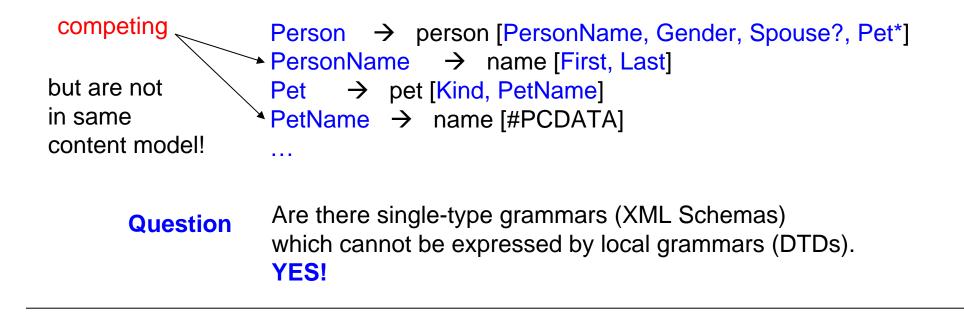
Classes of Grammars

local no competing TYPE names! (DTDs)

single-type TYPE names in the *same content model* do not compete!

(XML Schema's)

regular no restriction... (RELAX NG)



Classes of Grammars

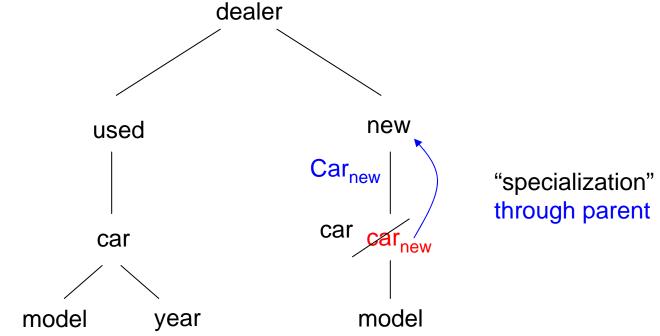
local no competing TYPE names! (DTDs)

single-type TYPE names in the *same content model* do not compete!

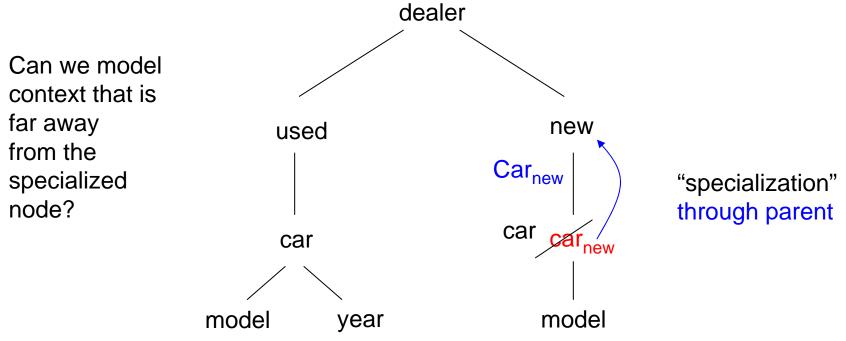
(XML Schema's)

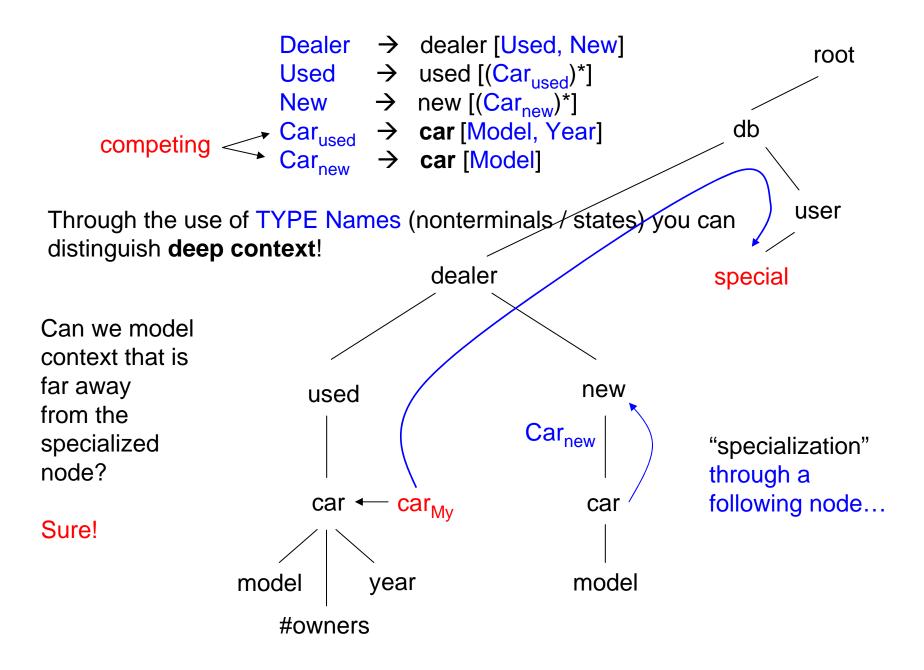
regular no restriction... (RELAX NG)

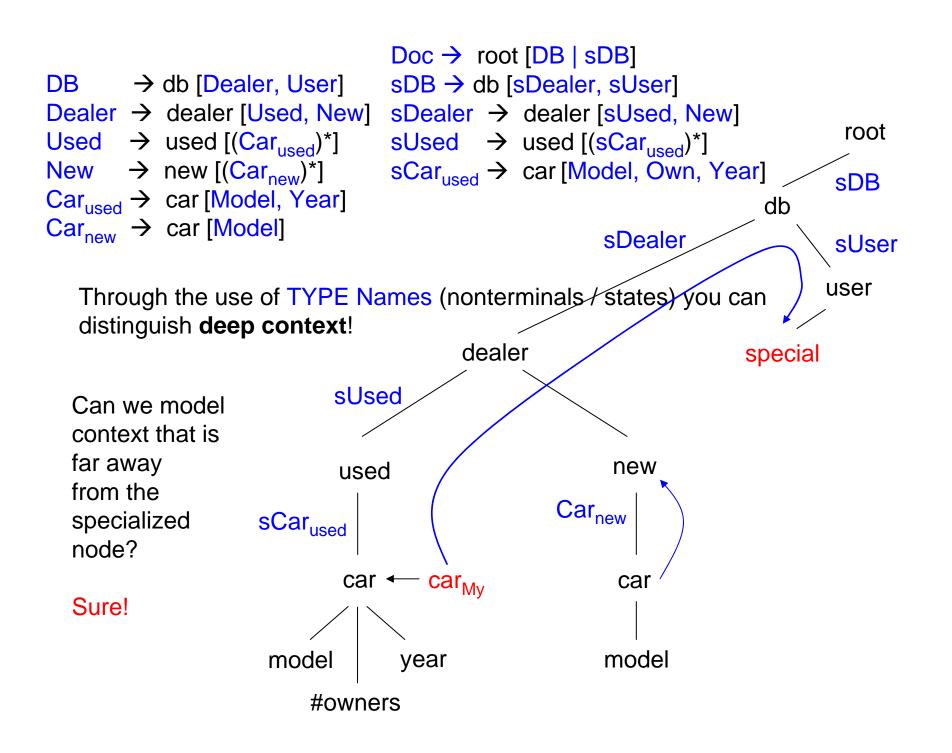
Through the use of TYPE Names (nonterminals / states) you can distinguish **deep context**!

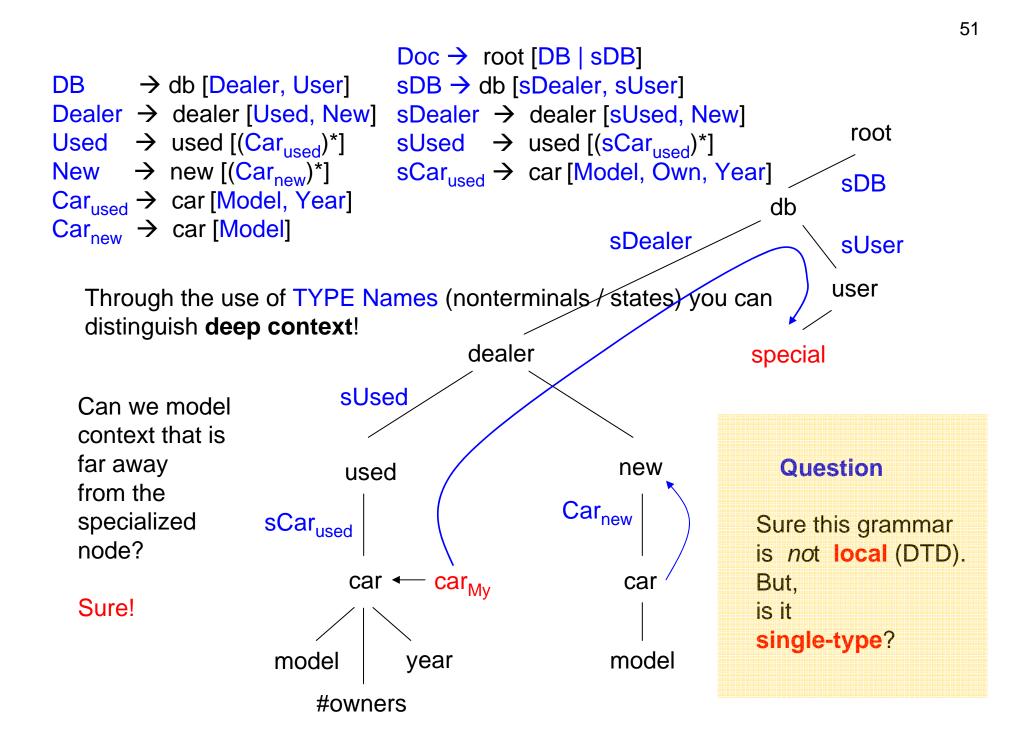


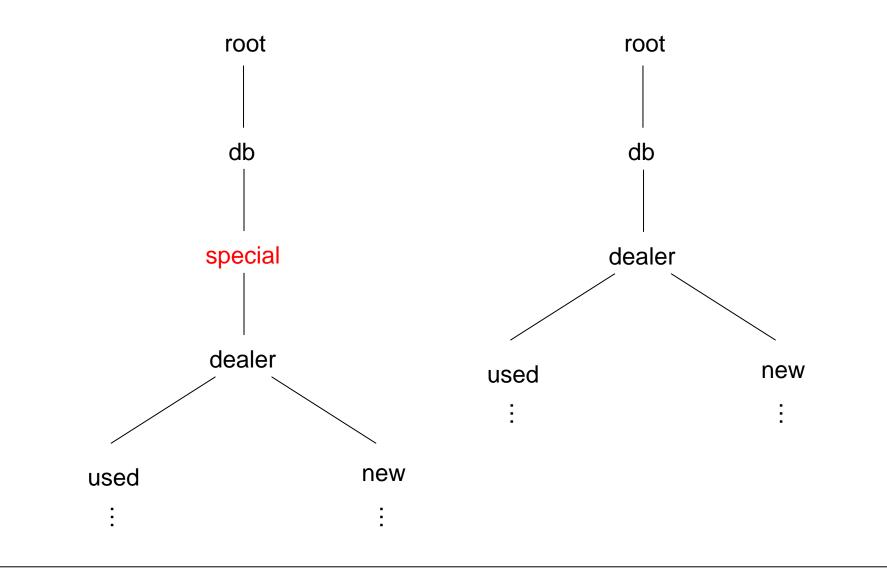
Through the use of TYPE Names (nonterminals / states) you can distinguish **deep context**!











Question Is this grammar **single-type**?

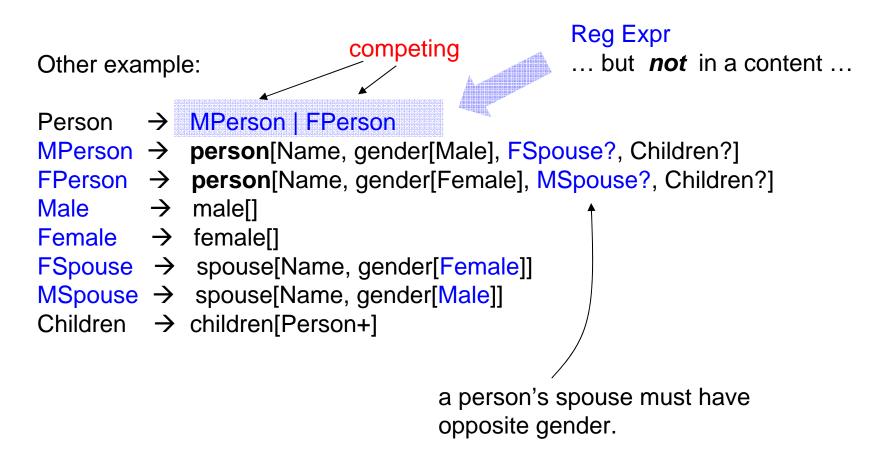
prev. example: probably, *not expressable* in single-type (XML Schema).

Other example:

Person \rightarrow	MPerson FPerson
MPerson \rightarrow	person[Name, gender[Male], FSpouse?, Children?]
FPerson \rightarrow	person[Name, gender[Female], MSpouse?, Children?]
Male \rightarrow	E3
Female \rightarrow	
	spouse[Name, gender[Female]]
•	spouse[Name, gender[Male]]
Children \rightarrow	children[Person+]
	a person's spouse must have opposite gender.

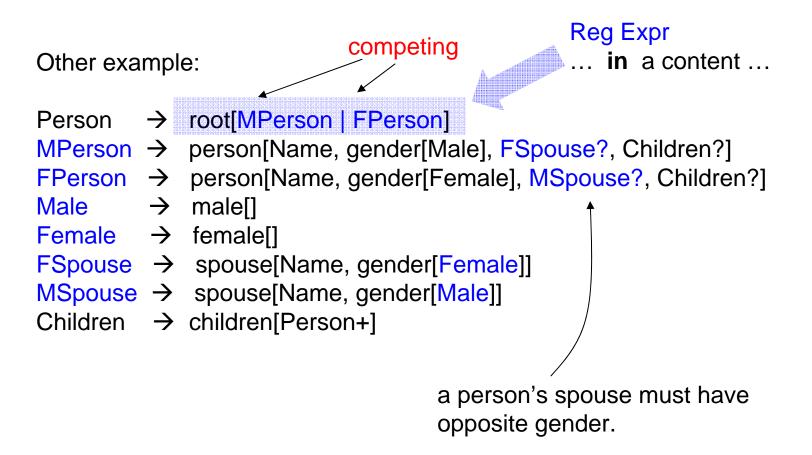
Note This example and the Pet-example are taken from Hosoya's book (see course web page).

prev. example: probably, *not expressable* in single-type (XML Schema).



BUT, is this even a "grammar" in our sense?

prev. example: probably, *not expressable* in single-type (XML Schema).



BUT, is this even a "grammar" in our sense? NO!

 \rightarrow Reg Expr only allowed inside a content ("under an element name").

Classes XML Type Formalisms

 local
 no competing TYPE names! (DTDs)

 single-type
 TYPE names in the same content model do not compete! (XML Schema's)

 regular
 no restriction... (RELAX NG)

Increasing Expressivness of defining sets of trees ("tree languages")

Questions

Given two DTDs D1 and D2 can we check if → all documents valid for D1 are also valid for D2? → D1 and D2 describe the same set of documents?

(DTD inclusion problem) (DTD equality problem)

Given a Relax NG grammar G, can we check if \rightarrow there exists any document that is valid for G? \rightarrow there is a document valid for G and valid for G2?

(emptiness problem) (intersection & emptiness)

Classes XML Type Formalisms

 local
 no competing TYPE names! (DTDs)

 single-type
 TYPE names in the same content model do not compete! (XML Schema's)

 regular
 no restriction... (RELAX NG)

Increasing Expressivness of defining sets of trees ("tree languages")

Questions

Given two DTDs D1 and D2 can we check if → all documents valid for D1 are also valid for D2? → D1 and D2 describe the same set of documents?

(DTD inclusion problem) (DTD equality problem)

Given a Relax NG grammar G, can we check if \rightarrow there exists any document that is valid for G? \rightarrow there is a document valid for G and valid for G2?

(emptiness problem) (intersection & emptiness)

If we can do it for **regular tree** grammars, then also works for single-type/local!!

equivalent to tree automata

Tree Automata: very powerful framework,

 \rightarrow Have all the good properties of string automata!

 \rightarrow Yet, they are more expressive!

Questions

Given two DTDs D1 and D2 can we check if \rightarrow all documents valid for D1 are also valid for D2? \rightarrow D1 and D2 describe the same set of documents?

(DTD inclusion problem) (DTD equality problem)

Given a Relax NG grammar G, can we check if \rightarrow there exists any document that is valid for G? \rightarrow there is a document valid for G and valid for G2?

(emptiness problem) (intersection & emptiness)

If we can do it for **regular tree** grammars, then also works for single-type/local!!

Tree Automata: very powerful framework,

 \rightarrow Have all the good properties of string automata!

 \rightarrow Yet, they are more expressive!

Note

String automata are **not** sufficient to check DTDs / Schemas! Even if we only consider well-bracketed strings!

Example 1

Example 2

- $c \rightarrow c[a, c, b]$
- $a \rightarrow empty$
- $b \rightarrow empty$
- $c \rightarrow empty$

 $a \rightarrow a[c, a]$ $a \rightarrow a[a, b]$ $a/b/c \rightarrow empty$

Finite-state automata are important:

. . .

→ Think you are in a maze, with only fixed memory and you can only read the maze (cannot mark anything).
wall

Model by finite automaton. In state q1, (to [N|S|E|W], \blacksquare) \rightarrow (q2, [N|S|E|W]) q2, (to [N|S|E|W], \square) \rightarrow (q3, [N|S|E|W]) empty

Can an automaton search the maze?

Finite-state automata are important:

 \rightarrow Think you are in a maze, with only fixed memory and you can only read the maze (cannot mark anything).

wall Model by finite automaton. In state q1, (to [N|S|E|W], \blacksquare) \rightarrow (q2, [N|S|E|W]) q2, (to [N|S|E|W], \square) \rightarrow (q3, [N|S|E|W]) empty

Can an automaton search the maze?

No!! → need markers ("pebbles"). How many? 5? 2?

Finite-state automata are important:

In our context, e.g., for

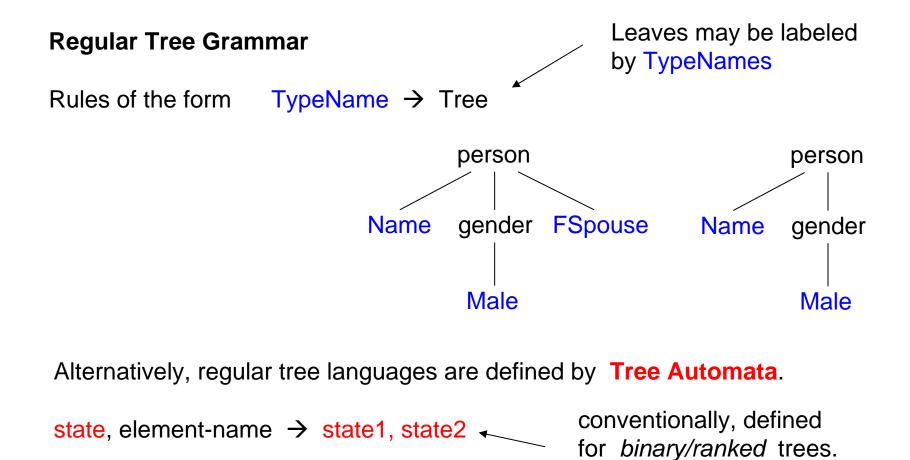
computation

- → KMP (efficient string matching) [Knuth/Morris/Pratt] generalization using automata. Used, e.g., in grep
- \rightarrow Compression
- → Static analysis of schemas & queries (= "everything you can do *before* before running over the actual data")

4. Static Methods, based on Tree Automata

63

Person → MPerson | FPerson MPerson → person [Name, gender[Male], FSpouse?] FPerson → person [Name, gender[Female], MSpouse?]



4. Static Methods, based on Tree Automata

Given grammars D1 and D2 can we check if
→ all documents valid for D1 are also valid for D2?
→ D1 and D2 describe the same set of documents?
→ does there exists any document that is valid for D1?
→ there is a document valid for D1 *and* valid for D2?

(inclusion problem)(equality problem)(emptiness problem)(intersection & emptiness)

ALL these checks are possible for regular tree grammars!!

→ hence, they are also solvable for DTDs / XML Schemas / RELAX NG's

- (1) use binary tree encodings
- (2) translate XML Type Definition to a Tree Grammar (easy)

Alternatively, regular tree languages are defined by **Tree Automata**.

state, element-name → state1, state2 -

conventionally, defined for *binary/ranked* trees.

4. Static Methods, based on Tree Automata

Given grammars D1 and D2 can we check if
→ all documents valid for D1 are also valid for D2?
→ D1 and D2 describe the same set of documents?
→ does there exists any document that is valid for D1?
→ there is a document valid for D1 *and* valid for D2?

(inclusion problem)

(equality problem) (emptiness problem) (intersection & emptiness)

ALL these checks are possible for regular tree grammars!!

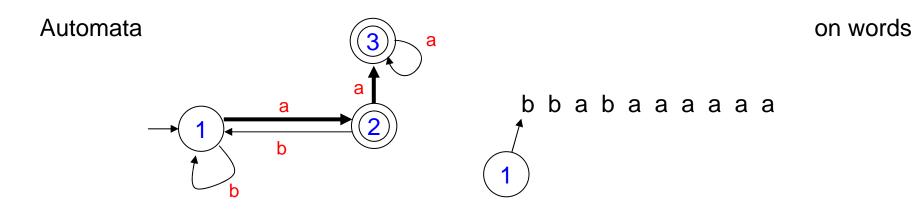
The checks above give rise to very powerful optimization procedures for XML Databases!

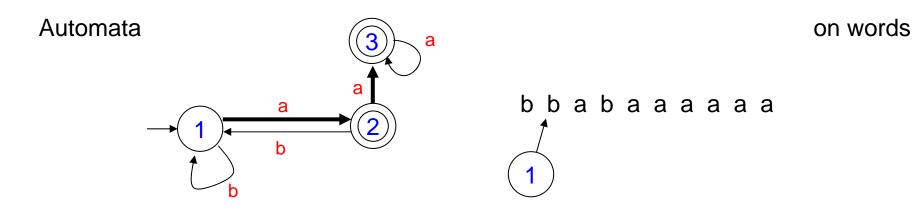
For example:

documents d_1, d_2, ..., d_n are valid for your schema "Small_xhtml".

Are they also valid for schema XHTML?

→ Check inclusion problem for Small_html and XHTML!

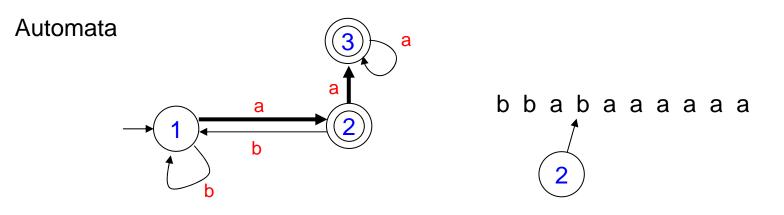


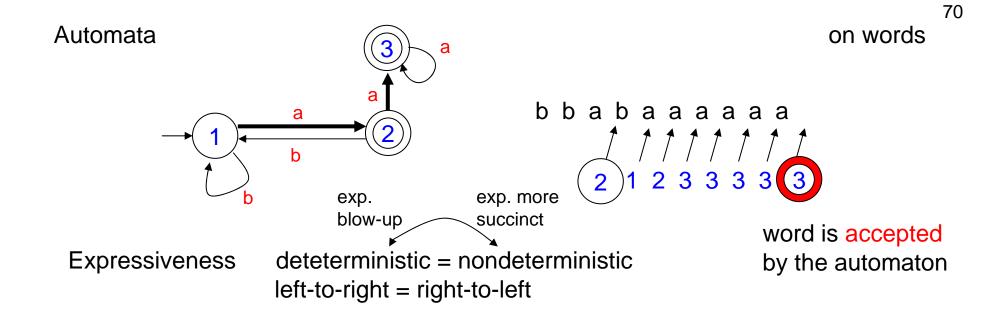


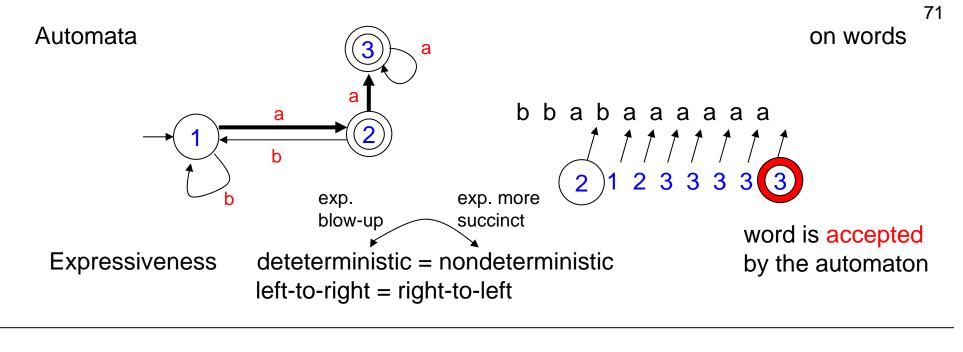
68

on words

on words

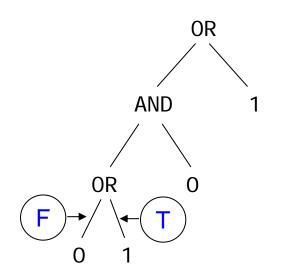






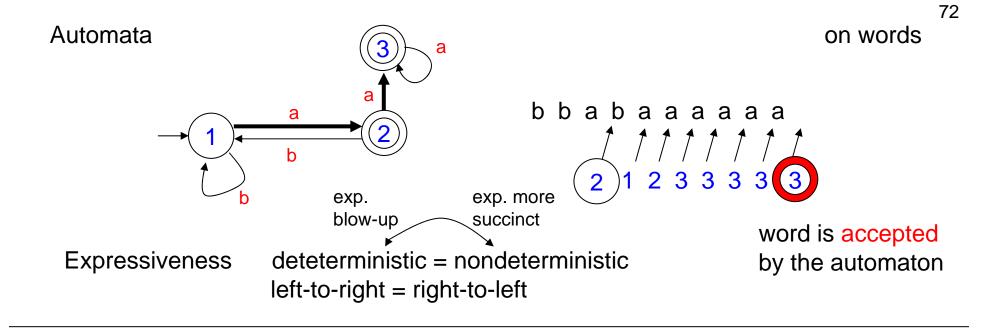
Automata on trees

1. *bottom-up* LABEL(state1, state2) \rightarrow state



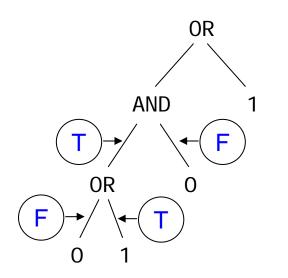
 $\begin{array}{c} 0() \rightarrow F \\ 1() \rightarrow T \\ OR(F,F) \rightarrow F \\ OR(F,T) \rightarrow T \end{array}$

. . .



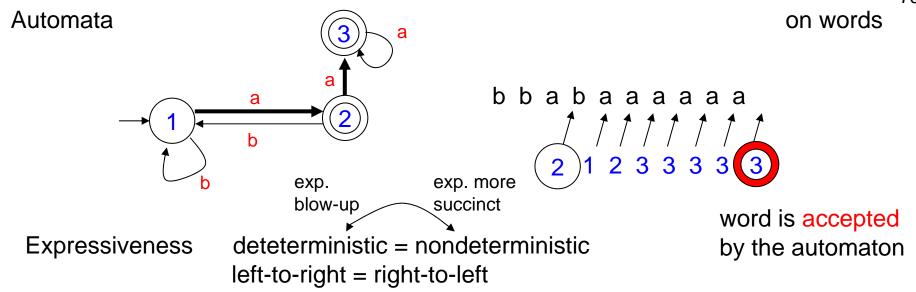
Automata on trees

1. *bottom-up* LABEL(state1, state2) \rightarrow state



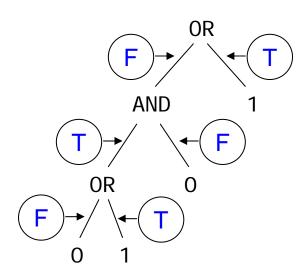
 $\begin{array}{c} 0() \rightarrow F \\ 1() \rightarrow T \\ OR(F,F) \rightarrow F \\ OR(F,T) \rightarrow T \end{array}$

. . .

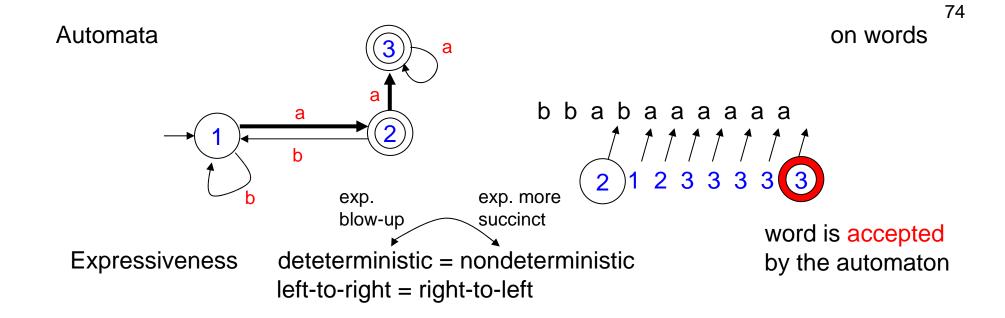


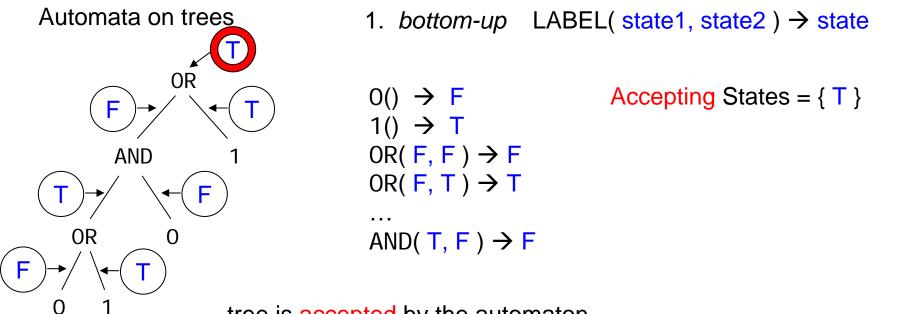
Automata on trees

1. *bottom-up* LABEL(state1, state2) \rightarrow state

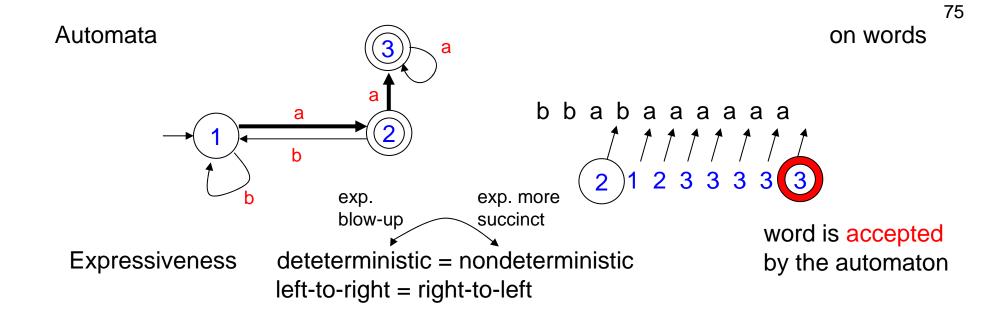


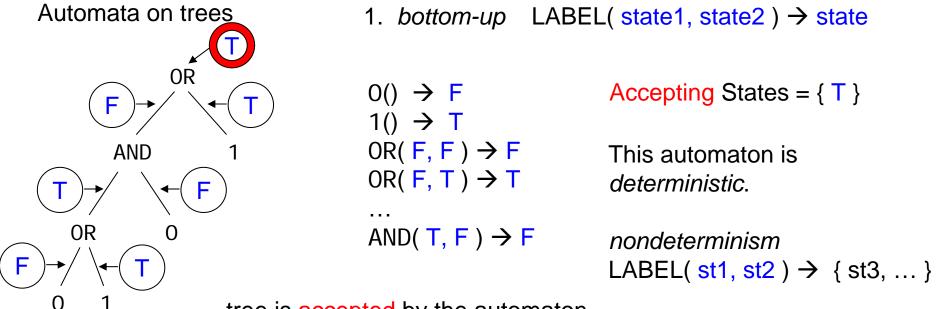
 $\begin{array}{c} 0() \rightarrow F \\ 1() \rightarrow T \\ OR(F,F) \rightarrow F \\ OR(F,T) \rightarrow T \\ \dots \\ AND(T,F) \rightarrow F \end{array}$





tree is accepted by the automaton

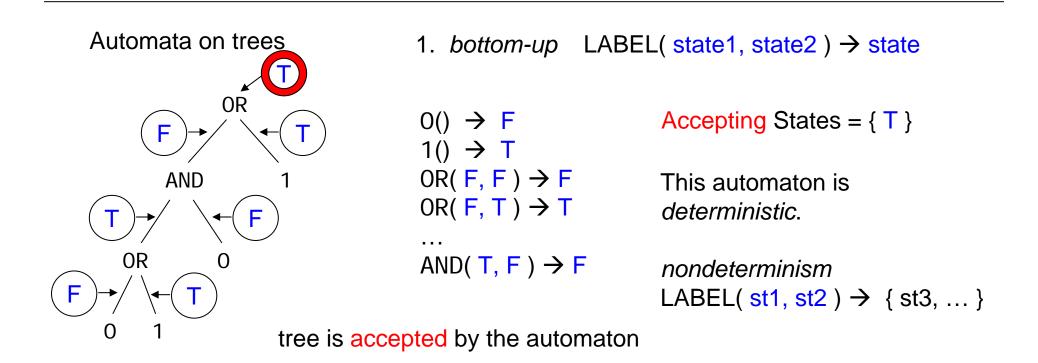




tree is accepted by the automaton

Question

How much memory do you need exactly, to run such a bottom-up tree automaton?

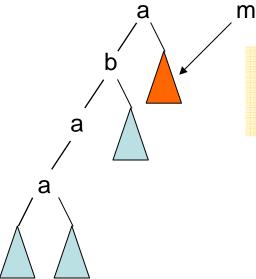


Similarly as for word automata:

For every nondeterministic bottom-up tree automaton there is an equivalent deterministic bottom-up tree automaton.

Again, the construction can cause exponential size blow-up.

2. *top-down* state, LABEL \rightarrow (state1, state2)



must contain a \$-leaf

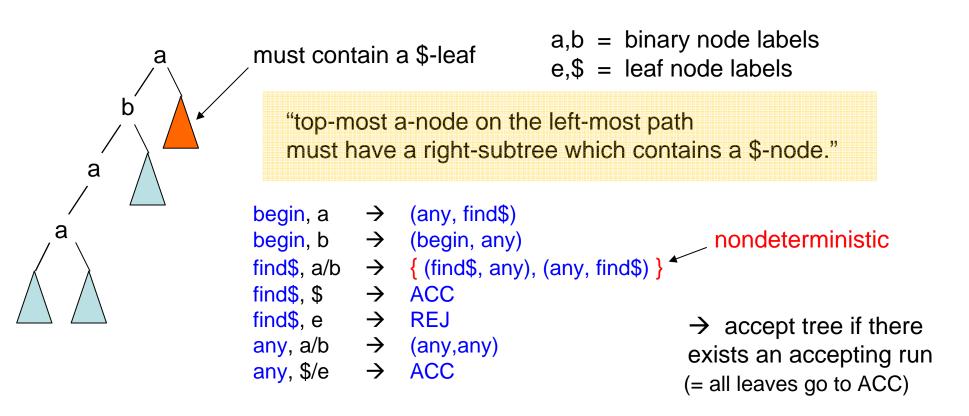
a,b = binary node labels e,\$ = leaf node labels

"top-most a-node on the left-most path must have a right-subtree which contains a \$-node." Similarly as for word automata:

For every **nondeterministic** bottom-up tree automaton there is an equivalent **deterministic** bottom-up tree automaton.

Again, the construction can cause exponential size blow-up.

2. *top-down* state, LABEL \rightarrow (state1, state2)



For every nondeterministic bottom-up tree automaton there is an equivalent deterministic bottom-up tree automaton.

Question

а

b

а

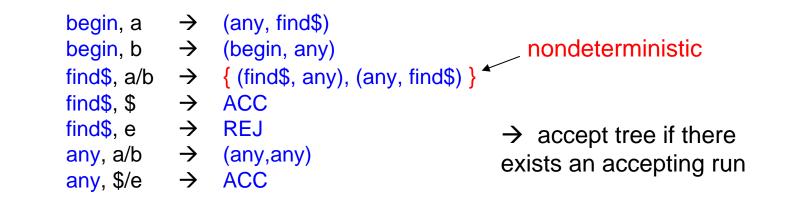
а

Can you find an equivalent bottom-up automaton for this example?

2. *top-down* state, LABEL \rightarrow (state1, state2)

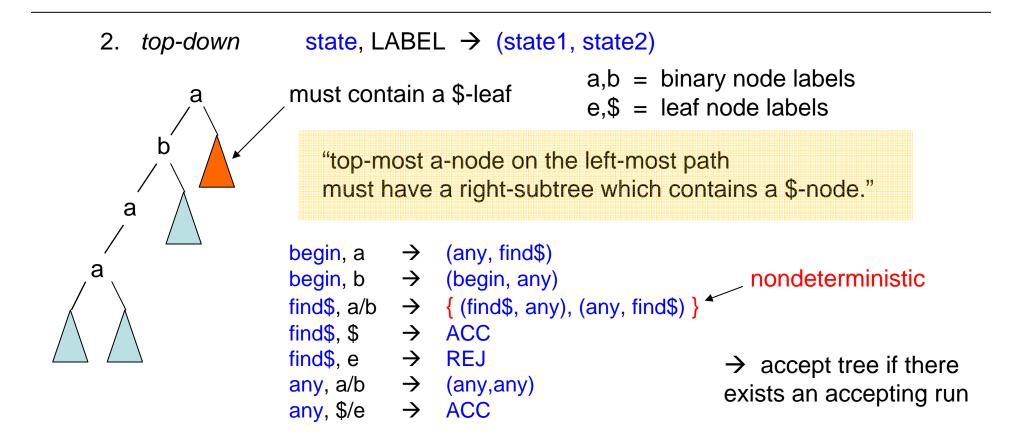
must contain a \$-leaf a,b = binary node labels e,\$ = leaf node labels

"top-most a-node on the left-most path must have a right-subtree which contains a \$-node."



 \rightarrow there is an equivalent deterministic bottom-up tree automaton, and

 \rightarrow there is an equivalent nondeterministic *top-down* tree automaton.

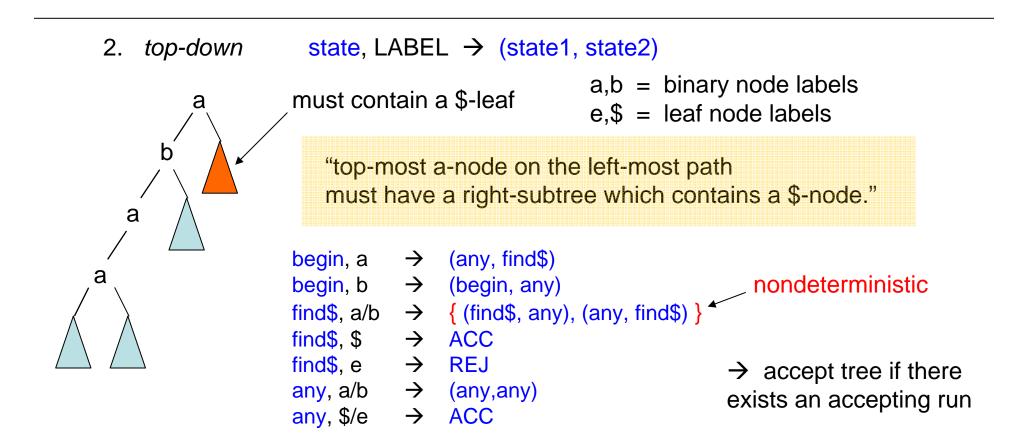


 \rightarrow there is an equivalent deterministic bottom-up tree automaton, and

 \rightarrow there is an equivalent nondeterministic *top-down* tree automaton.

Question

Is there an equivalent deterministic top-down automaton??



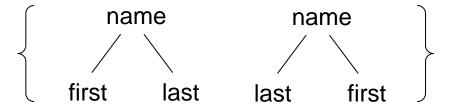
 \rightarrow there is an equivalent deterministic bottom-up tree automaton, and

 \rightarrow there is an equivalent nondeterministic *top-down* tree automaton.

Question

Is there an equivalent deterministic top-down automaton??

→ NO! 🛞



This set of two trees canNOT be recognized by any deterministic top-down tree automaton!!

Why?

- \rightarrow there is an equivalent deterministic bottom-up tree automaton, and
- \rightarrow there is an equivalent nondeterministic *top-down* tree automaton.

Question

Is there an equivalent deterministic top-down automaton??

→ NO! 😣

Questions

What about **local** tree languages (defined by DTDs).

→ Can they be accepted by deterministic top-down automata?

What about **single-type** tree languages (defined by XML Schema's) → Can they be accepted by deterministic top-down automata?

 \rightarrow there is an equivalent deterministic bottom-up tree automaton, and

 \rightarrow there is an equivalent nondeterministic *top-down* tree automaton.

Question

Is there an equivalent deterministic top-down automaton??

→ NO! 😣

Questions

What about **local** tree languages (defined by DTDs).

 \rightarrow Can they be accepted by deterministic top-down automata?

What about **single-type** tree languages (defined by XML Schema's) → Can they be accepted by deterministic top-down automata?

Yes!

Hence, there is **no DTD / Schema** for { name[first,last], name[last,first] }

For every deterministic bottom-up tree automaton there exists a minimal unique equivalent one!

 \rightarrow Equivalence is decidable

In fact, YOU have already produced minimal bottom-up tree automata!

The minimal DAG of a tree t can be seen as the minimal unique tree automaton that only accepts the tree t.

For every deterministic bottom-up tree automaton there exists a minimal unique equivalent one!

 \rightarrow Equivalence is decidable

In fact, YOU have already produced minimal bottom-up tree automata!

The minimal DAG of a tree t can be seen as the minimal unique tree automaton that only accepts the tree t.

Question

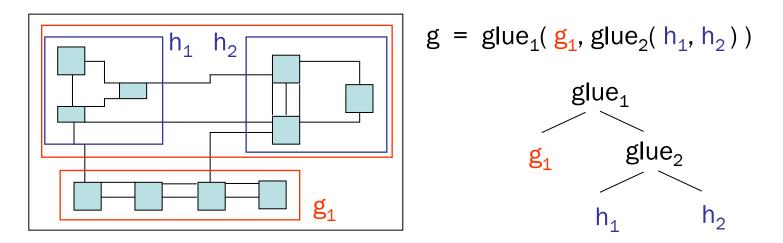
How expensive (complexity) to find minimal one?

 \rightarrow Same as for word automata?

Tree Automata are a very useful concept in CS!

 \rightarrow Heavily used in verification

"Derive a property of a complex object from the properties of its constituents..."



→ Do all graphs / chip-layouts produced in this way, have property P?

Use the hierarchical construction history of an object, in order to work on a "parse" tree instead of a complex graph. From there, use tree automata. ©

Many NP-complete graph problems become tractable on "bounded-treewidth" graphs!

XML Tree Automata play crucial rule for

→ Efficient validators against XML Types

→ Optimizations If doc1 is of TYPE1, then no need to validate against TYPE2, if we know TYPE2 included in TYPE1

- if only "slightly different" then only need to validate "there"
- incremental validation against updates
- etc, etc.
- Efficient query evaluators, use richer automata which can select nodes and produce query answers
- → Optimizations If answer of QUERY1 is in cache, then no need to evaluate QUERY2, if "included" in QUERY1.

- if every possible answer set to QUERY1 (of TYPE X) is EMPTY, then no need to evaluate on the real data!

→ XML Type Checking for Programming Languages

The Future

```
In 5-10 years from now: 🙂
```

You can write a function in Programming Language X

```
Function foo(XML document D: TYPE1): TYPE2
{
    traverse D
    & compute output;
    .
    return output
}
```

Compiler (XML Type Checker) will complain, if your function does not compute documents of TYPE2.

→ If no complaint, then **guaranteed**:

ALL outputs are ALWAYS of correct type!!)

The Future

```
Experimental PL's
                                                       In this direction:
In 5-10 years from now:
                        \odot
                                                       →CDuce
                                                       →XDuce
You can write a function in Programming Language X
Function foo(XML document D: TYPE1):
                                          TYPE2
{
    traverse D
        & compute output;
    return output
}
```

Compiler (XML Type Checker) will complain, if your function does not compute documents of TYPE2.

→ If no complaint, then correct type guaranteed.

Compilers will **have** to be able to give *static guarantees* about input/output behaviour of program!

END Lecture 5