
XML and Databases

Sebastian Maneth
NICTA and UNSW

Lecture 8
Streaming Evaluation: how much memory do you need?

CSE@UNSW   -- Semester 1, 2009



2

Small XPath Quiz

Can you give an expression that returns the  last / first occurrence
of each distinct price element?

<b>
<price>3</price>
<price>1</price>
<price>3</price>
<price>1</price>
<price>3</price>
<price>4</price>
<price>1</price>
<price>7</price>
</b>

Should return

<price>3</price>
<price>4</price>
<price>1</price>
<price>7</price>

Should return

<price>3</price>
<price>1</price>
<price>4</price>
<price>7</price>



3

Small XPath Quiz

Can you give an expression that returns the  last / first occurrence
of each distinct price element?

<b>
<price>3.0</price>
<price>1</price>
<price>3.00</price>
<price>1</price>
<price>3</price>
<price>4</price>
<price>1.000</price>
<price>7</price>
</b>

Should return

<price>3</price>
<price>4</price>
<price>1.000</price>
<price>7</price>

Should return

<price>3.0</price>
<price>1</price>
<price>4</price>
<price>7</price>

What if we mean  number-distinctness (not strings)?



4

0.  Recall

Evaluation of  Simple Paths   //a/b/c
Arbitrary Queries over  //, /, *

Outline

1. Automaton Approach 

2. Parallel Evaluation of Multiple Queries

3. Sizes of Automata

4. How to deal with Filters

5. Existing Systems for Streaming XPath Evaluation



5

Recall:   Top-Down Evaluation of  Simple Paths

aa b d

b

a

b

bc

//a/b   =Q

ac

query match position:  p = 2

[startElement( a )]
[startElement( b )]
[startElement( a )]
[endElement( a )]
[startElement( a )]
[startElement( c )]  
[endElement( c )]    
[startElement( b )]
[startElement( c )]   push(1)
[endElement( c )]    p = pop() = 1
[startElement( a )]   push(1)
[endElement( a )]    p = pop() = 1

2
1
2

[endElement( b )]    p = pop() = 2

evaluate in one single pre-order traversal (using a stack)

2
1
2

result node

result node



6

Recall:   Top-Down Evaluation of  Simple Paths

aa b d

b

a

b

bc

//a/b   =Q

ac

query match position:  p = 2
2
1
2

evaluate in one single pre-order traversal (using a stack)

2
1
2

Streaming Algorithm!

No need to store the document!!
Can evaluate on SAX event stream.

Simple Path //a_1/a_2/a_3/ . . . /a_n

TIME one pass through document tree.
SPACE stack of query positions. 

height is bounded by depth of document tree.

BUT

Need output buffers,
if subtrees of match 
nodes should be 
printed!



7

Recall:   Top-Down Evaluation of  Simple Paths

//a/b   =Q

query match position:  p = 2
2
1
2

evaluate in one single pre-order traversal (using a stack)

Streaming Algorithm!

No need to store the document!!
Can evaluate on SAX event stream.

If we print node-IDs,  then no
output buffers are needed!

True Streaming, with 
memory need proportional to height.

Simple Path //a_1/a_2/a_3/ . . . /a_n

TIME one pass through document tree.
SPACE stack of query positions. 

height is bounded by depth of document tree.

BUT

Need output buffers,
if subtrees of match 
nodes should be 
printed!



8

Recall:   Top-Down Evaluation of  Simple Paths

//a/b   =Q

query match position:  p = 2
2
1
2

evaluate in one single pre-order traversal (using a stack)

Streaming Algorithm!

No need to store the document!!
Can evaluate on SAX event stream.

1 Byte is enough for
small queries!

any good implementation of this
algorithm should work for documents
with  depth up to a couple of millions, 
and
NO restriction on document size!   

Simple Path //a_1/a_2/a_3/ . . . /a_n

TIME one pass through document tree.
SPACE stack of query positions. 

height is bounded by depth of document tree.

If we print node-IDs,  then no
output buffers are needed!



9

Arbitrary Slash+Slashslash

2
3

evaluate in one single pre-order traversal (using a stack)

Arbitrary queries with  /,//,* //a/b//c

multiple  //’s

aa b d

c

a

b

bc

ac

query match position:  p = 3

…
[startElement( a )]    push(3)
[endElement( a )]     p = pop() = 3

no match
stay in p=3!



10

2
3

evaluate in one single pre-order traversal (using a stack)

Arbitrary queries with  /,//,* //a/b//c

multiple  //’s

a b d

c

a

bc

ac

query match position:  p = 3

…
[startElement( a )]    push(3)
[endElement( a )]     p = pop() = 3
[startElement( a )]    push(3)
[startElement( c )]    push(3)

no match
stay in p=3!

3

a

b

Result node!
Mark it, and stay in p=3.

Arbitrary Slash+Slashslash



11

2
3

evaluate in one single pre-order traversal (using a stack)

Arbitrary queries with  /,//,* //a/b//c

multiple  //’s

a b d

c

a

bc

ac

query match position:  p = 3

…
[startElement( a )]    push(3)
[endElement( a )]     p = pop() = 3
[startElement( a )]    push(3)
[startElement( c )]    push(3)

no match
stay in p=3!

3

a

b

Result node!
Mark it, and stay in p=3.

Arbitrary Slash+Slashslash

Output Node-ID Start copying to Output Buffer



12

2
3

evaluate in one single pre-order traversal (using a stack)

Arbitrary queries with  /,//,* //a/b//c

multiple  //’s

a b d

c

a

bc

ac

query match position:  p = 3

…
[startElement( a )]    push(3)
[endElement( a )]     p = pop() = 3
[startElement( a )]    push(3)
[startElement( c )]    push(3)
[endElement( c )]     p = pop() = 3
[startElement( b )]    push(3)
[startElement( c )]    push(3)
…

no match
stay in p=3!

3

a

b

3

Arbitrary Slash+Slashslash



13

2
3

evaluate in one single pre-order traversal (using a stack)

Arbitrary queries with  /,//,* //a/b//c

multiple  //’s

a b d

c

a

bc

ac

query match position:  p = 3

3

a

b

3

Arbitrary Slash+Slashslash

Stay at position 3, 
for the  complete subtree!

Never go back to pos. 1 or pos. 2!



14

2
3

evaluate in one single pre-order traversal (using a stack)

Arbitrary queries with  /,//,* //a/b//c

multiple  //’s

a b d

c

a

bc

ac

query match position:  p = 3

3

a

b

3

Arbitrary Slash+Slashslash

Optimizations   (for Output Buffers)

(1)   If  inside a matched subtree, record
position (or range within buffer), instead
of creating a new output buffer.

(2) If  subtree is finished (we are not inside
a match), then we can write its buffer out 
and can start with empty buffer again.
[ Worst Case:
root node selected. size of doc. Needed. ] 



15

2
3

evaluate in one single pre-order traversal (using a stack)

Arbitrary queries with  /,//,* //a/b//c

multiple  //’s query match position:  p = 3

3
3

//a/b//c/d/*/e//f/g//h

Same as before

jump back within  /-sequence.
AT MOST to the beginning of the last  //.

Use  KMP within  /-sequence.

For *’s:    build several KMP-tables.

Arbitrary Slash+Slashslash



16

2
3

evaluate in one single pre-order traversal (using a stack)

Arbitrary queries with  /,//,* //a/b//c

multiple  //’s query match position:  p = 3

3
3

//a/b//c/d/*/e//f/g//h

Arbitrary Slash+Slashslash

If  Node-IDs are printed, then
no output buffers are needed.

Then:
Memory proportional to height.
Should run for arbitrary large 
docs!

Query Problem is solved!

Leave optimizations of 

>cat file.xml [1.2.7,1.3,1.3.1.1, …]

To  OS/UNIX  hackers.. ☺



17

//a/b//c/d/*/e//f/g//h

1. Automaton Approach

a b c d * e f g h

Same as before

jump back within  /-sequence.
AT MOST to the beginning of the last  //.

Use  KMP within  /-sequence.

For *’s:    build several KMP-tables.

Recall

Deterministic Automaton runs in

linear time and
constant space

(plus stack of states, if we run 
on paths of a tree)



18

//a/b//c/d/*/e//f/g//h

1. Automaton Approach

a b c d * e f g h

a

¬a,¬b

not a
and  not b

Same as before

jump back within  /-sequence.
AT MOST to the beginning of the last  //.

Use  KMP within  /-sequence.

For *’s:    build several KMP-tables.

Recall

Deterministic Automaton runs in

linear time and
constant space

(plus stack of states, if we run 
on paths of a tree)



19

//a/b//c/d/*/e//f/g//h

1. Automaton Approach

a b c d * e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬d

Same as before

jump back within  /-sequence.
AT MOST to the beginning of the last  //.

Use  KMP within  /-sequence.

For *’s:    build several KMP-tables.

Recall

Deterministic Automaton runs in

linear time and
constant space

(plus stack of states, if we run 
on paths of a tree)



20

//a/b//c/d/*/e//f/g//h

1. Automaton Approach

X
a b c d * e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬d

Problem
If it is NOT an e here, then what to do??E.g., 

a b c d c d

We should be in state X!



21

//a/b//c/d/*/e//f/g//h

1. Automaton Approach

X
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬d

Problem
If it is NOT an e here, then what to do??

Need to know what the * was!!

E.g., 
a b c d c d

We should be in state X!

d



22

//a/b//c/d/*/e//f/g//h

1. Automaton Approach

X
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬d

d

*=? Which other letters need to be considered?

c d x y

c

¬c,¬d,¬e

≠e
≠c



23

//a/b//c/d/*/e//f/g//h

X
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬d

d

*=? Which other letters need to be considered?

c d x y

c

¬c,¬d,¬e

≠e
≠c

for x≠c, not important what x is
only  x=c / x≠ c   matters

¬c e



24

//a/b//c/d/*/e//f/g//h

X
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬d

d

*=? Which other letters need to be considered?

c d x y

c

¬c,¬d,¬e

≠e
≠c

for x≠c, not important what x is
only  x=c / x≠ c   matters

¬c e

“splitting” – can be at most 
#different symbols many



25

Q1 = //a/b//c/d/*/e//f/g//h

X Q1
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬e

d

*=? Which other letters need to be considered?

c d x y

c

¬c,¬d,¬e

≠e
≠c

¬c e
c

¬c,¬d

f

¬f,¬g

¬h

match 
state
for Q1

a
To 
begin+1

for x≠c, not important what x is
only  x=c / x≠ c   matters

¬a

¬a



26

Q1 = //a/b//c/d/*/e//f/g//h

X Q1
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬e

d

c

¬c,¬d,¬e

¬c e
c

¬c,¬d

f

¬f,¬g

¬h

match 
state
for Q1

Advantage of automata:
can be combined to evaluate MANY queries “in parallel”.

a

¬a

¬a

To 
begin+1



27

Q1 = //a/b//c/d/*/e//f/g//h

X Q1
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬e

d

c

¬c,¬d,¬e

¬c e
c

¬c,¬d

f

¬f,¬g

¬h

match 
state
for Q1

Advantage of automata:
can be combined to evaluate MANY queries “in parallel”.

Q1=//a/b/c
Q2=//a/c

a

b

¬a,¬b,¬c

Q1
c

a

a

Q2

a

a

c

¬a

¬a

To 
begin+1



28

Q1 = //a/b//c/d/*/e//f/g//h

X Q1
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬e

d

c

¬c,¬d,¬e

¬c e
c

¬c,¬d

f

¬f,¬g

¬h

match 
state
for Q1

Advantage of automata:
can be combined to evaluate MANY queries “in parallel”.

Q1=//a/b/c
Q2=//a/c

a

b
Q1

c

a

a

Q2

a

a

c 1. Which transition is WRONG?

Questions

¬a,¬b,¬c

¬a

¬a

To 
begin+1



29

Q1 = //a/b//c/d/*/e//f/g//h

X Q1
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬e

d

c

¬c,¬d,¬e

¬c e
c

¬c,¬d

f

¬f,¬g

¬h

match 
state
for Q1

Advantage of automata:
can be combined to evaluate MANY queries “in parallel”.

Q1=//a/b/c
Q2=//a/c

a

b
Q1

c

a

a

Q2

a

a

c 1. Which transition is WRONG?
2. How many transitions are

missing?

Questions
¬a

¬a,¬b,¬c

¬a

¬a

To 
begin+1



30

Q1 = //a/b//c/d/*/e//f/g//h

X Q1
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬e

d

c

¬c,¬d,¬e

¬c e
c

¬c,¬d

f

¬f,¬g

¬h

match 
state
for Q1

Advantage of automata:
can be combined to evaluate MANY queries “in parallel”.

Q1=//a/b/c
Q2=//a/c

a

b
Q1

c

a

a

Q2

a

a

c 1. Which transition is WRONG?
2. How many transitions are

missing?

Questions
¬a

a

¬a,¬b,¬c

¬a

¬a

To 
begin+1



31

Q1 = //a/b//c/d/*/e//f/g//h

X Q1
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬e

d

c

¬c,¬d,¬e

¬c e
c

¬c,¬d

f

¬f,¬g

¬h

match 
state
for Q1

Advantage of automata:
can be combined to evaluate MANY queries “in parallel”.

Q1=//a/b/c
Q2=//a/c

a

b
Q1

c

a

a

Q2

a

a

c 1. Which transition is WRONG?
2. How many transitions are

missing?

Questions
¬a

a

¬a,¬c¬a,¬b,¬c

¬a

¬a

To 
begin+1



32

Q1 = //a/b//c/d/*/e//f/g//h

X Q1
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬e

d

c

¬c,¬d,¬e

¬c e
c

¬c,¬d

f

¬f,¬g

¬h

match 
state
for Q1

Advantage of automata:
can be combined to evaluate MANY queries “in parallel”.

Q1=//a/b/c
Q2=//a/c

a

b
Q1

c

a

a

Q2

a

a

c 1. Which transition is WRONG?
2. How many transitions are

missing?

Questions
¬a

a

¬a,¬c

a

¬a,¬b,¬c

¬a

¬a

To 
begin+1



33

Q1 = //a/b//c/d/*/e//f/g//h

X Q1
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬e

d

c

¬c,¬d,¬e

¬c e
c

¬c,¬d

f

¬f,¬g

¬h

match 
state
for Q1

Advantage of automata:
can be combined to evaluate MANY queries “in parallel”.

Q1=//a/b/c
Q2=//a/c

a

b
Q1

c

a

a

Q2

a

a

c 1. Which transition is WRONG?
2. How many transitions are

missing?

Questions
¬a

a

¬a,¬c

a

¬a

¬a,¬b,¬c

¬a

¬a

To 
begin+1



34

Q1 = //a/b//c/d/*/e//f/g//h

X Q1
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬e

d

c

¬c,¬d,¬e

¬c e
c

¬c,¬d

f

¬f,¬g

¬h

match 
state
for Q1

Advantage of automata:
can be combined to evaluate MANY queries “in parallel”.

Q1=//a/b/c
Q2=//a/c

a

b
Q1

c

a

a

Q2

a

a

c 1. Which transition is WRONG?
2. How many transitions are

missing?

Questions
¬a

a

¬a,¬c

a

¬a

¬a,¬b,¬c

¬a

¬a

¬a

To 
begin+1



35

Q1 = //a/b//c/d/*/e//f/g//h

X Q1
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬e

d

c

¬c,¬d,¬e

¬c e
c

¬c,¬d

f

¬f,¬g

¬h

match 
state
for Q1

Advantage of automata:
can be combined to evaluate MANY queries “in parallel”.

Q1=//a/b/c
Q2=//a/c

a

b
Q1

c

a

a

Q2

a

a

c 1. Which transition is WRONG?
2. How many transitions are

missing?

Questions
¬a

a

¬a,¬c

a

¬a

5
¬a,¬b,¬c

¬a

¬a

¬a

To 
begin+1



36

Q1 = //a/b//c/d/*/e//f/g//h

X Q1
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬e

d

c

¬c,¬d,¬e

¬c e
c

¬c,¬d

f

¬f,¬g

¬h

match 
state
for Q1

Advantage of automata:
can be combined to evaluate MANY queries  “in parallel”.

Q1=//a/b/c
Q2=//a/c

a

b
Q1

c

a

a

Q2

a

a

c

¬a
a

¬a,¬c

a

¬a ONE look-up
per node!

Combined automaton:
SIZE ≤ SIZE(A1) x SIZE(A2)

¬a,¬b,¬c

¬a

¬a

¬a

To 
begin+1



37

X Q1
a b c d *=c e f g h

a

¬a,¬b

not a
and  not b

c

¬c,¬e

d

c

¬c,¬d,¬e

¬c e
c

¬c,¬d

f

¬f,¬g

¬h

match 
state
for Q1

Advantage of automata:
can be combined to evaluate MANY queries  “in parallel”.

Q1=//a/b/c
Q2=//a/c

a

b
Q1

c

a

a

Q2

a

a

c

¬a
a

¬a,¬c

a

¬a ONE look-up
per node!

Question
What is  SIZE(A1)  wrt size of  Q1?

Take
(1) SIZE(A) = #states
(2) SIZE(A) = #transitions

Combined automaton:
SIZE ≤ SIZE(A1) x SIZE(A2)

¬a,¬b,¬c

¬a

¬a

¬a

To 
begin+1



3. The Size of the DFA

//a/*/*/*/b//a/*/*/*/b

Size of DFA =
exponential in *’s

(not a real concern)

Size of DFA =
exponential in *’s

(not a real concern)

*

*

b

a

*

*0

1

2

3

4

5

NFA

a

a

[other]

[other] [other]

[other] [other]

DFA  (fragment, and without back edges)

a

a

b

a

a

[other]0

01

012

0123

01234

012345

023

02

013 03

0234 0134 034

0345 0245 045

b b b



Theorem [GMOS’02] The number of states in the 
DFA for one linear XPath expression P is at 
most:

k = number of  //
s = size of the alphabet (number of tags)
m = max number of * between two consecutive //

k+|P| k smk+|P| k sm

3. The Size of the DFA



40

How to deal with filters?

//a[./d/e]/b//c

aa b d

c

a

b

bc

ac

d

e

When we meet the c-nodes
(in pre order traversal)
we do not know yet if the
filter will evaluate to true.



41

How to deal with filters?

//a[./d/e]/b//c

aa b d

c

a

b

bc

ac

d

e

We have to use buffers, as before.

However, now buffers may be  deleted 
without being used.

When we meet the c-nodes
(in pre order traversal)
we do not know yet if the
filter will evaluate to true.

Must be stored in memory

Question  

If we output  node ID’s,  then how much
memory is needed in the worst case for
queries with filters?



42

How to deal with filters?

//a[./d/e]/b//c

aa b d

c

a

b

bc

ac

d

e

Must be stored in memory

Optimizations

(1) Store potential match trees as DAGs
(2) Release potential match trees 

as early as possible!

Size of largest documents that
can be streamed in this way depends 
on   - #filters, 

- sizes of (pre) selected trees,
- quality of (1), (2), etc..



43

How to deal with filters?

//a[./d/e]/b//c

aa b d

c

a

b

bc

ac

d

e

Release potential match trees 
as early as possible!

Find earliest point at which we know 
the filter is true.

Size of largest documents that
can be streamed in this way depends 
on   - #filters, 

- sizes of (pre) selected trees,
- quality of (1), (2), etc..

Must be stored in memory



44

How to deal with filters?

//a[./d/e]/b//c

aa b d

c

a

b

bc

ac

d

e

Release potential match trees 
as early as possible!

Find earliest point at which we know 
the filter is true.

Size of largest documents that
can be streamed in this way depends 
on   - #filters, 

- sizes of (pre) selected trees,
- quality of (1), (2), etc..

d

e

No need to store. Stream!  ☺



45

How to deal with filters?

//a[./d/e]/b//c

aa b d

c

a

b

bc

ac

d

e

Find earliest point at which we know 
the filter is true.

Harder for  Boolean combinations:

[not(./d/e) and (./c/d or //b/c)]

Size of largest documents that
can be streamed in this way depends 
on   - #filters, 

- sizes of (pre) selected trees,
- quality of (1), (2), etc..

d

e

No need to store. Stream!  ☺

Question where is the earliest point for this filter?



46

How to deal with filters?

//a[./d/e]/b//c

aa b d

c

a

b

bc

ac

d

e

Find earliest point at which we know 
the filter is true.

Harder for  Boolean combinations:

[not(./d/e) and (./c/d or //b/c)]

Size of largest documents that
can be streamed in this way depends 
on   - #filters, 

- sizes of (pre) selected trees,
- quality of (1), (2), etc..

d

e

No need to store. Stream!  ☺

Question where is the earliest point for this filter?
and now?



47

How to deal with filters?

//a[./d/e]/b//c

aa b d

c

a

b

bc

ac

d

e

We can also construct automata for
filter expressions!

Use a push-down for potential candidates.

Push-Down Automaton
can probably be designed so that it pops/outputs 
candidates as early as possible.

Size of largest documents that
can be streamed in this way depends 
on   - #filters, 

- sizes of (pre) selected trees,
- quality of (1), (2), etc..



48

How to deal with filters?

//a[./d/e]/b//c

Another Idea

Use 2-pass algorithm: first (bottom-up) phase to mark subtrees with
filter information.
Second (top-down) phase to determine match nodes.

Why is this interesting?

Fast main memory evaluation
Use disk as intermediate store  (stream twice) 



49

• XFilter and YFilter [Altinel and Franklin 00]  [Diao et al 02]
• X-scan  [Ives, Levy, and Weld 00]
• XMLTK  [Avila-Campillo et al 02]
• XTrie [Chan et al 02]
• SPEX  [Olteanu, Kiesling, and Bry 03]
• Lazy DFAs [Green et al 03]
• The XPush Machine  [Gupta and Suciu 03]
• XSQ  [Peng and Chawathe 03]
• TurboXPath [Josifovski, Fontoura, and Barta 04]
• …

5. Streaming XPath Algorithms



50

5. Streaming XPath Algorithms

Some following slides are by T. Amagasa and M Onizuka (Japan)
See http://www.dasfaa07.ait.ac.th/DASFAA2007_tutorial3_1.pdf

Most of the following slides are by Dan Suciu (the above slides are
Actually also based on Suciu’s slides ☺ )
See
http://www.cs.washington.edu/homes/suciu/talk-spire2002.ppt























Basic NFA Evaluation

Properties:
☺ Space = linear

Throughput = decreases linearly

Systems:
• XFilter [Altinel&Franklin’99], YFilter.
• XTrie [Chan et al.’02]





Basic DFA Evaluation

Properties:
☺ Throughput = constant !

Space = GOOD QUESTION

System:
• XML Toolkit [University of Washington]

http://xmltk.sourceforge.net



The Size of the DFA

Theorem [GMOS’02] The number of states in the 
DFA for one linear XPath expression P is at 
most:

k = number of  //
s = size of the alphabet (number of tags)
m = max number of * between two consecutive //

k+|P| k smk+|P| k sm



Size of DFA: 
Multiple Expressions

//section//footnote
//table//footnote
//figure//footnote
. . . . .
//abstract//footnote

//section//footnote
//table//footnote
//figure//footnote
. . . . .
//abstract//footnote

100 expressions

2100 states !!2100 states !!

There is a theorem here too, but it’s not useful…



Solution:
Compute the DFA Lazily

• Also used in text searching
• But will it work for 106 XPath expressions ?
• YES !
• For XPath it is provably effective, for two 

reasons:
– XML data is not very deep
– The nesting structure in XML data tends to be 

predictable





Lazy DFA and “Simple” DTDs

• Document Type Definition (DTD)
– Part of the XML standard
– Will be replaced by XML Schema

• Example DTD:

<!ELEMENT document (section*)>
<!ELEMENT section ((section|abstract|table|figure)*)>
<!ELEMENT figure (table?,footnote*)>
.  .  .  .  .

<!ELEMENT document (section*)>
<!ELEMENT section ((section|abstract|table|figure)*)>
<!ELEMENT figure (table?,footnote*)>
.  .  .  .  .

Definition A DTD is simple if all cycles are loops



Lazy DFA and “Simple” DTDs

document

section

table

figure

footnote

Simple DTD:

//section//footnote
//table//footnote
//figure//footnote
//abstract//footnote

//section//footnote
//table//footnote
//figure//footnote
//abstract//footnote

XPath expressions

abstract

Eager DFA “remembers” 24 sets
Lazy DFA “remembers” only 4 sets 



Lazy DFA and “Simple” DTDs

Theorem [GMOS’02] If the XML data has a 
“simple” DTD, then lazy DFA has at most:

states.

n = max depths of XPath expressions
D = size of the “unfolded” DTD
d = max depths of self-loops in the DTD

1+D(1+n)d1+D(1+n)d

Fact of life: 
“Data-like” XML
has simple 
DTDs

Fact of life: 
“Data-like” XML
has simple 
DTDs



Lazy DFA and Data Guides

• “Non-simple” DTDs are useless for the 
lazy DFA

• “Everything may contain everything”

<!ELEMENT document (section*)>
<!ELEMENT section ((section|table|figure|abstract|footnote)*)>
<!ELEMENT table ((section|table|figure|abstract|footnote)*)>
<!ELEMENT figure ((section|table|figure|abstract|footnote)*)>
<!ELEMENT abstract ((section|table|figure|abstract|footnote)*)>

<!ELEMENT document (section*)>
<!ELEMENT section ((section|table|figure|abstract|footnote)*)>
<!ELEMENT table ((section|table|figure|abstract|footnote)*)>
<!ELEMENT figure ((section|table|figure|abstract|footnote)*)>
<!ELEMENT abstract ((section|table|figure|abstract|footnote)*)>

Fact of life: “Text”-like XML has non-simple DTDsFact of life: “Text”-like XML has non-simple DTDs



Lazy DFA and Data Guides

Definition [Goldman&Widom’97]
The data guide for an XML data instance is 

the Trie of all its root-to-leaf paths



Lazy DFA and Data Guides

document

section section

sectiontable

table

section

table figure

document

section

section

table

table figure

section

table

XML Data Data Guide

Fact of life: real XML data has “small” data guide
[Liefke&S.’00]
Fact of life: real XML data has “small” data guide
[Liefke&S.’00]

section

figure figure



Lazy DFA and “Simple” DTDs

Theorem [GMOS’02] If the XML data has a 
data guide with G nodes, then the 
number of states in the lazy DFA is at 
most:

G = number of nodes in the data guide

1+G1+G



1

10

100

1000

10000

100000

simple prov ebBPSS protein nasa treebank

Number of Lazy DFA States - SYNTHETIC Data

103 XPath

104 XPath

105 XPath

4000
states



1

10

100

1000

10000

100000

protein nasa treebank

Number of Lazy DFA States - REAL Data

103 XPath

104 XPath

105 XPath 95 states

40000 states
G = 350000



Throughput for 103, 104, 105, 106 XPath expressions 

[ prob(*)=10%, prob(//)=10% ]

0.0001MB/s

0.001MB/s

0.01MB/s

0.1MB/s

1MB/s

10MB/s

100MB/s

5MB 10MB 15MB 20MB 25MB

Total input size

parser
lazyDFA (103 XPath)
lazyDFA (104 XPath)
lazyDFA (105 XPath)
lazyDFA (106 XPath)
xfilter (103 XPath)
xfilter (104 XPath)
xfilter(105 XPath)
xfilter(106 XPath)

Parser:
10MB/s

Lazy DFA:
5.4MB/s



78

END
Lecture 9


