XML and Databases

Lecture 9

Properties of XPath

Sebastian Maneth
NICTA and UNSW

CSE@UNSW -- Semester 1, 2009

Outline

1. XPath Equivalence
2. No Looking Back: How to Remove Backward Axes
3. Containment Test for XPath Expressions

A Note on Equality Test in XPath

Useful Functions (on Node Sets)

Careful with equality ("=")

```
<a>
    <b>
        <d>red</d>
        <d>green</d>
        <d>blue</d>
    </b>
    <c>
        <d>yellow</d>
        <d>orange</d>
        <d>green</d>
    </c>
</a>
```

XPath 2.0 has clearer comparison operators!
there is a node in the node set for b / d with same string value as a node in node set c/ d

A Note on Equality Test

```
p1, p2 XPath (1.0) Expressions
```

($\mathrm{p} 1==\mathrm{p} 2$) \quad is true if there exists a node selected by p1
that is identical to a node selected by p2
XPath 2.0
XQuery 1.0

```
<a>
    <b>
        <d>red</d>
        <d>green</d>
        <d>blue</d>
    </b>
        //a[b/d = c/d] selects what?
    <c>
        <d>yellow</d>
        <d>orange</d>
        <d>green</d>
    </c>
</a>
```


A Note on Equality Test

```
p1, p2 XPath (1.0) Expressions
```

($\mathrm{p} 1==\mathrm{p} 2$) \quad is true if there exists a node selected by p 1
that is identical to a node selected by p2
XPath 2.0
XQuery 1.0

```
<a>
    <b>
        <d>red</d> false (on any document)
        <d>green</d>
        <d>blue</d>
    </b>
    <c>
        <d>yellow</d>
        <d>orange</d>
        <d>green</d>
    </c>
//*[ chi I d: : node() [ 1]
    _ chil d:: node()[ positi on=l ast()]]
```


A Note on Equality Test

```
p1, p2 XPath (1.0) Expressions
(p1 == p2) is true if there exists a node selected by p1
                        that is identical to a node selected by p2
XPath 2.0
XQuery 1.0
```

XPath 1.0 simulation of (node) equality test (==)

Instead of (p1 == p2) write:

$$
\text { (count(p1|p2) < count(p1) }+\operatorname{count}(\mathrm{p} 2))
$$

1. XPath Equivalence

p1, p2 XPath (1.0) Expressions

$(\mathrm{p} 1 \equiv \mathrm{p} 2) \quad \mathrm{p} 1$ "is equivalent to" p2 is true if, for any document \boldsymbol{D}, and any context node \boldsymbol{N} of \boldsymbol{D},
p1 evaluated on \boldsymbol{D} with context \boldsymbol{N} gives the same result as
p2 evaluated on \boldsymbol{D} with context \boldsymbol{N}.

Examples

```
/a//*/b \equiv /a/*//b
//a/b/c/../.. \equiv //a[.b/c/]
//a[b | c] \equiv //a/*[self::b | self::c]/..
NOT equivalent: chi ld: :*/ parent ::* 非 sel f::*
-> show a counter example!
```


1. XPath Equivalence

EBNF for XPaths that we want to consider now:

```
        path ::= path | path | / path | path / path | path [ qualif ] | axis : : nodetest | \perp .
        qualif ::= qualif and qualif | qualif or qualif | ( qualif )|
        path = path | path == path | path .
    axis ::= reverse_axis |forward_axis .
reverse_axis ::= parent | ancestor | ancestor-or-self |
    preceding | preceding-sibling.
forward_axis ::= self | child|descendant | descendant-or-self |
    following| following-sibling .
nodetest ::= tagname |*| text()| node().
```

An XPath starting with "/" (root node) is called absolute, otherwise it is called relative.

1. XPath Equivalence

p1, p2 XPaths
p arbitrary XPath
q arbitrary qualifier
Rel \rightarrow Abs If $\mathrm{p} 1 \equiv \mathrm{p} 2$, then $/ \mathrm{p} 1 \equiv / \mathrm{p} 2$.
Adjunct If $\mathrm{p} 1 \equiv \mathrm{p} 2$ and p is a relative, then $\mathrm{p} 1 / \mathrm{p} \equiv \mathrm{p} 2 / \mathrm{p}$. If $\mathrm{p} 1 \equiv \mathrm{p} 2$ and $\mathrm{p} 1, \mathrm{p} 2$ relative, then $\mathrm{p} / \mathrm{p} 1 \equiv \mathrm{p} / \mathrm{p} 2$. If $\mathrm{p} 1 \equiv \mathrm{p} 2$, then $\mathrm{p} 1[\mathrm{q}] \equiv \mathrm{p} 2[q]$ and $\mathrm{p}[\mathrm{p} 1] \equiv \mathrm{p}[\mathrm{p} 2]$.

Qualifier Flattening $\quad \mathrm{p}[\mathrm{p} 1 / \mathrm{p} 2] \equiv \mathrm{p}[\mathrm{p} 1[\mathrm{p} 2]]$
ancestor-or-self::n \equiv ancestor::n | self::n
descendant-or-self::n \equiv descendant::n | self::n

$$
\begin{aligned}
& \mathrm{p}[\mathrm{p} 1=/ \mathrm{p} 2] \equiv \mathrm{p}[\mathrm{p} 1[\text { self::node }()=/ \mathrm{p} 2]] \\
& \mathrm{p}[\mathrm{p} 1==/ \mathrm{p} 2] \equiv \mathrm{p}[\mathrm{p} 1[\operatorname{self}:: \text { node }()==/ \mathrm{p} 2]]
\end{aligned}
$$

1. XPath Equivalence

Lemma 3.2. Let m and n be node tests, i.e. m and n are tag names or one of the $x P$ ath constructs *, node(), or text().

- Let a be one of the axes parent, ancestor, preceding, preceding-sibling, self, following, or following-sibling. Then the following holds:

$$
/ a:: n \equiv \begin{cases}1 & \text { if } a=\text { self } \text { and } n=\operatorname{node}() \\ \perp & \text { otherwise }\end{cases}
$$

- Let a be the preceding or ancestor axis. Then the following equivalences hold:

$$
\begin{aligned}
& / \text { child }:: m / a:: n \equiv \begin{cases}/ \text { self }:: \operatorname{node}()[\text { child }:: m] & \text { if } a=\text { ancestor } \text { and } n=\operatorname{node}() \\
\perp & \text { otherwise }\end{cases} \\
& / \text { child }: m[a:: n] \equiv \begin{cases}/ \text { child }:: m & \text { if } a=\text { ancestor } \text { and } n=\text { node() } \\
\perp & \text { otherwise }\end{cases}
\end{aligned}
$$

2. No Looking Back

Dual

backward forward
parent
ancestor
ancestor-or-sel f
preceding
precedi ng-sibl ing

```
child
descendant
descendant - or-sel f
following
fol l ovi ng-si bl i ng
```

Thus: dual(parent) = child dual(following) = preceding etc.

Rewrite rule \#1 (p,s: relative paths, ax: reverse axis)

$$
p[a x:: m x s]
$$

$$
\rightarrow
$$

$$
\mathrm{p}[/ \text { descendant : : mis]/ dual(ax): : node() } \overline{=} \text { sel } f:: \text { node()] }
$$

Rewrite rule \#1 (p,s: relative paths, ax: reverse axis)

E.g. $\quad \mathrm{ax}=$ ancestor

```
p[ ancestor::m] }\quad
    p[ / descendant : : mx descendant : : node( ) = =sel f : : node( ) ]
```

"any m-node from which the context node can be reached via descendant, must be an ancestor of the context node."

Rewrite rule \#1 (p,s: relative paths, ax: reverse axis)

```
p[ ax::mxs] 别
    p[/descendant::m[s]/dual(ax)::node() = sel f::node()]
                \ ¢ ll
```

E.g. $a x=$ preceding-sibling

```
p[ precedi ng-si bl i ng: :m
    ->
        p[ / descendant : : nx fol l owi ng-si bl i ng: : node( ) =sel f : : node( ) ]
```

"any m-node from which the context node can be reached via following-sibling, must be a preceding-sibling of the context node."

Rewrite rule \#1 (p,s: relative paths, ax: reverse axis)

E.g. ax=preceding-sibling

```
p[ precedi ng-si bl i ng: : m]
        p[ / descendant : : mx fol l owi ng-si bl i ng: : node( ) \(\overline{=}\) sel f: : node( ) ]
"any m-node from which the context node can be reached via following-sibling, must be a preceding-sibling of the context node."

Similar for parent and preceding. (ancestor-or-self not really needed. Why?)

Rewrite rule \#1 (p,s: relative paths, ax: reverse axis)
```

p[ax: : mxs]
p[/descendant:: mís]/dual(ax): : node() = sel f::node()]

```

Rewrite rule \#1 (p,s: relative paths, ax: reverse axis)
```

p[ax: : nx s]
p[/ descendant:: mis]/dual(ax): : node() = sel f:: node()]

```

Removes first reverse axis inside a filter (qualifier).
Use qualifier flattening to replace *any* reverse axis from inside a filter.
\[
\text { Qualifier Flattening } \quad \mathrm{p}[\mathrm{p} 1 / \mathrm{p} 2] \equiv \mathrm{p}[\mathrm{p} 1[\mathrm{p} 2]]
\]

Similar rules for absolute paths:
```

$/ \mathrm{p} / \mathrm{fAx}: \mathrm{n} / \mathrm{ax}: \mathrm{m} \rightarrow$ /descendant: : m dual(ax): $: \mathrm{n}=/ \mathrm{p} / \mathrm{fAx}: \mathrm{n} \mathrm{n}$
/fAx: : $\mathrm{n} / \mathrm{ax}:: \mathrm{m} \quad \boldsymbol{\rightarrow} /$ descendant: $: \mathrm{mf}$ dual(ax): : $\mathrm{n}=/ \mathrm{fAx}:: \mathrm{n}]$

```

Rewrite rules \#2 and \#2a

\section*{E.g.}
```

/ descendant : : pri ce/ precedi ng: : nare

```
is rewritten via Rule \#2a into:
/ descendant : : name[fol lowi ng: : price=/ descendant: : price]

Similar rules for absolute paths:
\[
\begin{aligned}
& \text { /p/fAx: : } \mathrm{n} / \mathrm{ax}: \mathrm{m} \rightarrow \text { /descendant: : } \mathrm{m} \text { dual(ax): : } \mathrm{n}=/ \mathrm{p} / \mathrm{fAx}: \mathrm{n} \mathrm{n} \\
& \text { /fAx: : } \mathrm{n} / \mathrm{ax}:: \mathrm{m} \rightarrow \text { /descendant: }: m \text { dual(ax): : } \mathrm{n}=/ \mathrm{fAx}:: \mathrm{n}]
\end{aligned}
\]

Rewrite rules \#2 and \#2a
E.g.
/ descendant : : price/ precedi ng: : nare
is rewritten via Rule \#2a into:
/ descendant : : name[fol l owi ng: : price=/ descendant: : price]

Of course, the "join" can be removed in this example:
Not needed, in this
/ descendant : : name[ fol l owi ng: : price]
example.


Similar rules for absolute paths:
```

/p/fAx: : $\mathrm{n} / \mathrm{ax}: \mathrm{m} \rightarrow$ /descendant: : m dual(ax): : $\mathrm{n}=/ \mathrm{p} / \mathrm{fAx}: \mathrm{n} \mathrm{n}$
/fAx: : $\mathrm{n} / \mathrm{ax}:: \mathrm{m} \rightarrow$ /descendant: $: m$ dual(ax): : $\mathrm{n}=/ \mathrm{fAx}:: \mathrm{n}]$

```

Rewrite rules \#2 and \#2a
```

E.g.
/ descendant::j ournal [chil d: : title]/descendant:: price/precedi ng: : name
becomes
/ descendant : : name[fol l owi ng: : price=
/ descendant: : journal [chil d: : title]/descendant: : price]

```

Can you avoide the join, also for this example??

Similar rules for absolute paths:
\[
\begin{array}{ll}
\text { / } \mathrm{p} / \mathrm{fAx}:: \mathrm{n} / \mathrm{ax}:: \mathrm{m} & \rightarrow \text { /descendant: : midual(ax): : } \mathrm{n}=/ \mathrm{p} / \mathrm{fAx}:: \mathrm{n}] \\
\text { /fAx: }: \mathrm{n} / \mathrm{ax}:: \mathrm{m} & \rightarrow \text { /descendant: : midual(ax): }: \mathrm{n}=/ \mathrm{fAx}: \mathrm{n}]
\end{array}
\]

Rewrite rules \#2 and \#2a
```

 path ::= path | path | / path | path / path | path [qualif] | axis :: nodetest | \perp .
 qualif ::= qualif and qualif | qualif or qualif | (qualif)|
 path = path | path == path | path .
 axis ::= reverse_axis | forward_axis .
 reverse_axis ::= parent | ancestor | ancestor-or-self |
 preceding | preceding-sibling .
 forward_axis ::= self | child| descendant | descendant-or-self |
following| following-sibling .
nodetest ::= tagname |*| text()| node().
(1) p[ax::mxs] }\quad
p[/descendant::mis]/dual(ax): : node() = self::node()]
(2) /p/fAx: : n/ ax: :m }m\mathrm{ / descendant: : midual(ax): : n = /p/fAx: : n]

```


Rules (1),(2),(2a) suffice to remove ALL backward axes from above queries! Why?
\(\rightarrow\) Size Increase?
\(\rightarrow\) How many joins?

\section*{2. No Looking Back}


Joins (==) are expensive! (typically quadratic wrt data)
To obtain queries with fewer joins consider the forward-axis left of the reverse-axis to be removed!

New rules will be of the form
```

p/forw back
p/ forw[back]

```
\(\Rightarrow\) p_new
\(\Rightarrow \quad\) p_new

\section*{2. No Looking Back}

Interaction of back=par ent with forward axes:
descendant:: \(n /\) parent: \(: m \equiv\) descendant-or-self: \(: m\) [child: \(: n]\)

\section*{2. No Looking Back}

Interaction of back=par ent with forward axes:
\[
\begin{align*}
\text { descendant }:: n / \text { parent }:: m & \equiv \text { descendant-or-self }:: m[\text { child }:: n]  \tag{3}\\
\text { child }:: n / \text { parent }:: m & \equiv \text { self }:: m[\text { child }:: n] \tag{4}
\end{align*}
\]

\section*{2. No Looking Back}

Interaction of back=par ent with forward axes:
\[
\begin{align*}
\text { descendant }:: n / \text { parent }:: m & \equiv \text { descendant-or-self }:: m[\text { child }:: n]  \tag{3}\\
\text { child }:: n / \text { parent }:: m & \equiv \operatorname{self}:: m[\text { child }:: n]  \tag{4}\\
p / \text { self }:: n / \text { parent }:: m & \equiv p[\text { self }:: n] / \text { parent }:: m \tag{5}
\end{align*}
\]

\section*{2. No Looking Back}

Interaction of back=par ent with forward axes:
\[
\begin{align*}
\text { descendant }:: n / \text { parent }:: m & \equiv \text { descendant-or-self }:: m[\text { child }:: n]  \tag{3}\\
\text { child }:: n / \text { parent }:: m & \equiv \text { self }:: m[\text { child }: n]  \tag{4}\\
p / \text { self }:: n / \text { parent }:: m & \equiv p[\text { self }:: n] / \text { parent }:: m  \tag{5}\\
p / \text { following-sibling }:: n / \text { parent }:: m & \equiv p[\text { following-sibling }:: n] / \text { parent }:: m \tag{6}
\end{align*}
\]

\section*{2. No Looking Back}

Interaction of back=par ent with forward axes:
\[
\begin{align*}
& \text { descendant }:: n / \text { parent }:: m \equiv \text { descendant-or-self }:: m[\text { child }:: n]  \tag{3}\\
& \text { child }:: n / \text { parent }:: m \equiv \text { self }:: m[\text { child }: n]  \tag{4}\\
& p / \text { self }:: n / \text { parent }:: m \equiv p[\text { self }:: n] / \text { parent }:: m  \tag{5}\\
& p / \text { following-sibling }:: n / \text { parent }:: m \equiv p[\text { following-sibling }:: n] / \text { parent }:: m  \tag{6}\\
& p / \text { following }:: n / \text { parent }:: m \equiv p / \text { following }:: m[\text { child }:: n]  \tag{7}\\
& \mid p / \text { ancestor-or-self }:: *[\text { following-sibling }:: n] \\
& / \text { parent }:: m
\end{align*}
\]

\section*{2. No Looking Back}

Interaction of back=par ent with forward axes:
\[
\begin{align*}
& \text { descendant:: } n / \text { parent: }: m \equiv \text { descendant-or-self: }: m \text { [child: }: n]  \tag{3}\\
& \text { child:: } n / \text { parent: }: m \equiv \text { self::m[child:: } n]  \tag{4}\\
& p / \text { self: }: n / \text { parent: }: m \equiv p \text { [self:: } n] / \text { parent: }: m  \tag{5}\\
& p / \text { following-sibling: }: n / \text { parent: }: m \equiv p \text { [following-sibling: }: n \text { ]/parent: : } m  \tag{6}\\
& p / \text { following:: } n / \text { parent: }: m \equiv p / \text { following: }: m \text { [child: : } n \text { ] }  \tag{7}\\
& \text { | } p / \text { ancestor-or-self::*[following-sibling:: } n \text { ] } \\
& \text { /parent::m } \\
& \text { descendant: }: n \text { [parent: : } m \text { ] } \equiv \text { descendant-or-self: }: m / c h i l d:: n  \tag{8}\\
& \text { child:: } n \text { [parent::m] } \equiv \text { self::m/child:: } n  \tag{9}\\
& p / \text { self:: } n \text { [parent:: } m \text { ] } \equiv p \text { [parent:: } m \text { ]/self:: } n  \tag{10}\\
& p / \text { following-sibling:: } n \text { [parent: }: m] \equiv p \text { [parent:: } m \text { ]/following-sibling:: } n  \tag{11}\\
& p / \text { following:: } n \text { [parent:: } m \text { ] } \equiv p / \text { following::m/child:: } n  \tag{12}\\
& \text { | } p / \text { ancestor-or-self::*[parent::m] } \\
& \text { /following-sibling::n }
\end{align*}
\]

\section*{2. No Looking Back}

Interaction of back=ancest or with forward axes:
\[
\begin{align*}
p / \text { descendant }:: n / \text { ancestor }:: & m p[\text { descendant }:: n] / \text { ancestor }:: m  \tag{13}\\
& \mid p / \text { descendant-or-self }:: m \text { [descendant }:: n]
\end{align*}
\]

\section*{2. No Looking Back}

Interaction of back=ancest or with forward axes:
\[
\begin{align*}
& p / \text { descendant }:: n / \text { ancestor }:: m \equiv p[\text { descendant }: n] / \text { ancestor }:: m  \tag{13}\\
&\mid p / \text { descendant-or-self }:: m \text { [descendant }:: n] \\
& \text { /descendant }: ~: n / \text { ancestor }:: m \equiv / \text { descendant-or-self }:: m[\text { descendant }:: n] \tag{13a}
\end{align*}
\]

\section*{2. No Looking Back}

Interaction of back=ancest or with forward axes:
\[
\begin{align*}
& p / \text { descendant: : } n / \text { ancestor: }: m \equiv p \text { [descendant: }: n \text { ]/ancestor: : } m  \tag{13}\\
& \mid p / \text { descendant-or-self:: } m \text { [descendant:: } n \text { ] } \\
& \text { /descendant:: } n / \text { ancestor: }: m \equiv / \text { descendant-or-self::m[descendant: : } n \text { ] }  \tag{13a}\\
& p / \text { child: : } n / \text { ancestor: : } m \equiv p \text { [child: }: n] / \text { ancestor-or-self: : } m \tag{14}
\end{align*}
\]

\section*{2. No Looking Back}

Interaction of back=ancest or with forward axes:
\[
\begin{align*}
& p / \text { descendant: : } n / \text { ancestor: }: m \equiv p \text { [descendant: : } n \text { ]/ancestor: : } m  \tag{13}\\
& \text { | } p / \text { descendant-or-self:: } m \text { [descendant: : } n \text { ] } \\
& \text { /descendant:: } n / \text { ancestor: }: m \equiv / \text { descendant-or-self::m[descendant:: } n \text { ] }  \tag{13a}\\
& p / \text { child:: } n / \text { ancestor: }: m \equiv p \text { [child: }: n] / \text { ancestor-or-self:: } m  \tag{14}\\
& p / \text { self:: } n / \text { ancestor: }: m \equiv p \text { [self:: } n \text { ]/ancestor: }: m \tag{15}
\end{align*}
\]

\section*{2. No Looking Back}

Interaction of back=ancest or with forward axes:
\[
\begin{align*}
& p / \text { descendant: : } n / \text { ancestor: }: m \equiv p \text { [descendant: : } n \text { ]/ancestor: : } m  \tag{13}\\
& \mid p / \text { descendant-or-self:: } m \text { [descendant:: } n \text { ] } \\
& \text { /descendant:: } n / \text { ancestor: }: m \equiv / \text { descendant-or-self::m[descendant: : } n \text { ] }  \tag{13a}\\
& p / \text { child:: } n / \text { ancestor: : } m \equiv p \text { [child: }: n] / \text { ancestor-or-self:: } m  \tag{14}\\
& p / \text { self:: } n / \text { ancestor: }: m \equiv p \text { [self: : } n \text { ]/ancestor: : } m  \tag{15}\\
& p / \text { following-sibling: }: n / \text { ancestor: }: m \equiv p \text { [following-sibling: }: n \text { ]/ancestor : : } m \tag{16}
\end{align*}
\]

\section*{2. No Looking Back}

Interaction of back=ancest or with forward axes:
\[
\begin{aligned}
& p / \text { descendant: }: n / \text { ancestor }: ~: m \equiv p \text { [descendant: : } n \text { ]/ancestor: : } m \\
& \mid p / \text { descendant-or-self::m[descendant:: } n \text { ] } \\
& \text { /descendant:: } n / \text { ancestor: }: m \equiv / \text { descendant-or-self::m[descendant:: } n \text { ] } \\
& p / \text { child: : } n / \text { ancestor: : } m \equiv p \text { [child: }: n] / \text { ancestor-or-self : : } m \\
& p / \text { self: }: n / \text { ancestor: }: m \equiv p \text { [self: }: n] / \text { ancestor: }: m \\
& p / \text { following-sibling: }: n / \text { ancestor: }: m \equiv p \text { [following-sibling: }: n \text { ]/ancestor: : } m \\
& p / \text { following:: } n / \text { ancestor: }: m \equiv p / \text { following:: } m \text { [descendant: }: n \text { ] } \\
& \text { | } p / \text { ancestor-or-self::* } \\
& \text { [following-sibling::*/descendant-or-self:: } n \text { ] } \\
& \text { /ancestor::m }
\end{aligned}
\]

Similar rules for ancest or in a filters.

\section*{2. No Looking Back}

Interaction of back=preceding with forward axes:
```

 p/descendant:: n/preceding::m\equivp[descendant:: n]/preceding::m
 | p/child::*
 [following-sibling::*/descendant-or-self::n]
 /descendant-or-self::m
 /descendant:: }n/\mathrm{ preceding::m /descendant::m[following:: }n\mathrm{]
 p/child::n/preceding::m\equivp[child:: n]/preceding::m
 | p/child::*[following-sibling::n]
 /descendant-or-self::m
 p/self::n/preceding::m \equivp[self::n]/preceding::m
 p/following-sibling:: }n/\mathrm{ preceding::m =p[following-sibling::n]/preceding::m
| p/following-sibling::*[following-sibling::n]
/descendant-or-self::m
| p[following-sibling::n]/descendant-or-self::m
p/following::n/preceding::m\equivp[following:: }n\mathrm{]/preceding::m
| p/following::m[following::n]
| p[following:: n]/descendant-or-self::m

Rule 33

$p /$ descendant:: $n /$ preceding: $: m \equiv p$ [descendant:: n]/preceding: : m
| $p /$ child::*[following-sibling::*/descendant-or-self:: n]/descendant-or-self::m

Rule 33

2. No Looking Back

/ descendant : : price/ precedi ng: : name
is rewritten via Rule \#2a into:
/ descendant : : name[fol l owi ng: : price"d descendant: : price]

Now, let us use Rule (33a)
/ descendant: : $n /$ precedi ng: :m $\quad \rightarrow$ / descendant: : mifollowing: : n]

We obtain
/ descendant: : name[fol I owi ng: : price]

```
/ descendant: : j ournal [child: t title]/ descendant : : pri ce/ precedi ng: : name
```


becomes

```
/ descendant: : narre[fol l owi ng: : price=
    / descendant : : j our nal [chi l d: : title]/ descendant: : price]
```

Rule (33a)
/ descendant : : $n /$ precedi ng: : $m \quad \rightarrow$ / descendant: : mfollowing: : n] doesn't work because descendant is absolute here.
Rule (33):
$p /$ descendant : : $n /$ precedi ng: : $m \quad \rightarrow \quad \mathrm{p}[$ descendant: : n$] / \mathrm{precedi} \mathrm{ng}:$: m
| p/ chil d: : *[fol lowing-si bl ing: : */ descendant-or-self: : n]
/ descendant - or - sel f: : m

We obtain

```
p[ descendant : : price]/ precedi ng: : name
    | p/chi l d: : *[followi ng-si bl i ng: : */descendant-or-sel f:: pri ce]
    / descendant-or-sel f: : name
```

```
/ descendant : : journal [child: :title]/ descendant : : pri ce/ precedi ng: : name
becomes
/ descendant : : name[fol l owi ng: : price=
    / descendant : : j our nal [chi l d: : ti tle]/ descendant: : price]
```

Rule (33a)
/ descendant: : $\mathrm{n} / \mathrm{precedi} \mathrm{ng}: \mathrm{m} \boldsymbol{\mathrm { m }} \boldsymbol{\rightarrow}$ / descendant:: mfollowing: : n$]$ doesn't work because descendant is absolute here.
Rule (33):
$\mathrm{p} /$ descendant : : $\mathrm{n} / \mathrm{precedi} \mathrm{ng}: \mathrm{m} \quad \mathrm{m} \mathrm{p}$ [descendant: : n$] /$ precedi ng : : m
l p/child::*[followi ng-sibling: :*/descendant-or-self::n]
/ descendant-or-sel f:: m
\rightarrow Rule (33a) with $n=$ journal [chi Id: :title][descendant: : price]
pdescendant: : pricel/ precedi ng: : name
| p/child: : *[following-si bling: : */descendant-or-self::price] / descendant-or-sel f: name

```
/ descendant : : journal [chil d::title]/ descendant : : pr i ce/ precedi ng: : name
becomes
/ descendant : : name[fol l owi ng: : pri ce=
    / descendant : : j ournal [chi l d: : ti tle]/ descendant : : price]
```

Rule (33a)
/ descendant: : n / precedi ng: : $\mathrm{m} \boldsymbol{\rightarrow}$ / descendant:: mfollowing: : n$]$ doesn't work because descendant is absolute here.
/ descendant: : name[folloning: : journal [child: title][descendant: :price]]
| p/child: : *[followi ng-si bling: : */ descendant-or-self::price]
/ descendant - or-self: : name
\rightarrow Rule (33a) with $\mathrm{n}=\mathrm{j}$ ournal [child::title][descendant: : price]
p[descendant: : price]/ precedi ng: : name
| p/chi l d: : *[following-si bling: : */ descendant-or-self: : price] / descendant - or-sel f: : name

Theorem

(from D. Olteanu, H. Meuss, T. Furche, F. Bry XPath: Looking Forward. EDBT Workshops 2002: 109-127)

Given an XPath expression p that has no joins of the form ($\mathrm{p} 1==\mathrm{p} 2$) with both p1,p2 relative, an equivalent expression u without reverse axes can be computed.

Time needed: at most exponential in length of p Length of u : at most exponential in length of p
(moreover: no joins are introduced when computing u)

Questions

\rightarrow Can you find a subclass for which Time to compute u is linear or polynomial?
\rightarrow What is the problem with joins ($\mathrm{p} 1==\mathrm{p} 2$) for removal of reverse axes?

3. XPath Containment Test

Given two XPath expressions p, q:
Are all nodes selected by p, also selected by q ? (on any document)
(p "contained in" q)
Has many applications!
Want to select documents that "match p".
\rightarrow If a document matches p, and p contained in q, then we know the document also matches q !
\rightarrow If a document does not match q, and p contained in q, then we know that document does not match p!

Applications

\rightarrow Decrease online-time of publish/subscribe systems based on XPath
\rightarrow Decrease query-time by making use of materialized intermediate results
\rightarrow Optimization by ruling out queries with empty result set etc, etc

3. XPath Containment Test

Given two XPath expressions p, q
" 0 -containment" For every tree, if p selects a node then so does q.
$p \subseteq_{0} q$
"1-containment" For every tree, all nodes selected by p are also selected by q .
$p \subseteq_{1} q$
"2-containment" For every tree, and every context node N,
$p \subseteq_{2} q$ all nodes selected by p starting from N, are also selected by q starting from N .

1. Inclusion on Booleans
2. Inclusion on Node Sets
3. Inclusion on Node Relations
(If only child and descendant axes are allowed then \subseteq_{1} and \subseteq_{2} are the same! -- Why?)

3. XPath Containment Test

Given two XPath expressions p, q
" 0 -containment" For every tree, if p selects a node then so does q.
$p \subseteq_{0} q$
"1-containment" For every tree, all nodes selected by p are also selected by q. $p \subseteq_{1} q$

Question

Given p, q and the fact $p \subseteq_{1} q$, how can you determine from a result set of nodes for q, the correct result set of nodes for p ?

3. XPath Containment Test

Given two XPath expressions p, q
Sometimes we want to test containment wrt a given DTD:

```
p =/a/b/ d
q = /a/ /c
Boolean!
```

Want to check if $p \subseteq_{0} q$.
NO! $\begin{gathered}a \\ \\ \\ \\ \\ \\ \\ \\ b \\ b \\ d\end{gathered}$
But, what if documents are valid wrt to this DTD?
$\begin{array}{lll}\text { root } & \rightarrow & a^{*} \\ a & \rightarrow & b^{*} \quad \text { I } c^{*} \\ b & \rightarrow & d+c+ \\ c & \rightarrow & b ? c ?\end{array}$

PTIME	$\begin{aligned} & \text { XP }(/, / /, *)[21] \\ & \text { XP }(/,[], *) \text { (see [19]) } \\ & \text { XP }(/, / /,[])[2] \text {, with fixed bounded } \\ & \text { SXICs }[9] \\ & \text { XP }(/ / / /)+\text { DTDs }[22] \\ & \text { XP }[/,[]]+\text { DTDs [22] } \end{aligned}$	
CoNP	$\mathrm{XP}(/, / /,[], *)[19]$ $\mathrm{XP}(/, / /,[], *, \mid), \mathrm{XP}(/, \mid), \mathrm{XP}(/ /, \mid)[22]$ $\mathrm{XP}(/,[])+\mathrm{DTDs}[22]$ $\mathrm{XP}(/ /,[1)+$ DTDs $[22]$	
Π_{2}^{p}	$\mathrm{XP}(/, / /,[], \mid)+$ existential variables + path equality + ancestor-or-self axis + fixed bounded SXICs [9] $\mathrm{XP}(/, / /,[], *, \mid)+$ existential variables + all backward axes + fixed bounded SXICs [9] $\mathrm{XP}(/, / /,[], \mid)+$ existential variables with inequality [22]	
PSPACE	XP(/, //, [], *,\|) and XP(/, //,) if the alphabet is finite [22] $\mathrm{XP}(/, / /,[], *, \mid)+$ variables with XPath semantics [22]
EXPTIME	$\mathrm{XP}(/, / /,[], \mid)+$ existential variables + bounded SXICs [9] $\begin{aligned} & \mathrm{XP}(/, / /,[], *, \mid)+\operatorname{DTDs}[22] \\ & \mathrm{XP}(/, / /, \mid)+\mathrm{DTDs}[22] \\ & \mathrm{XP}(/, / /,[], *)+\operatorname{DTDs}[22] \end{aligned}$	
Undecidable	$\mathrm{XP}(/, / /,[], \mid)+$ existential variables + unbounded SXICs [9] $\mathrm{XP}(/, / /,[], \mid)+$ existential variables + bounded SXICs + DTDs [9] $\mathrm{XP}(/, / /,[], *, \mid)+$ nodeset equality + simple DTDs [22] $\mathrm{XP}(/, / /,[], *, \mid)+$ existential variables with inequality[22]	

2. XPath Containment Test

from:

T. Schwentick
XPath query containment.
SIGMOD Record 33(1): 101-109 (2004)

Pattern trees

E.g. $p=a[. / / d] / * / / c$

Note: child order has no meaning in pattern trees!

C
selection node (unique)

Test \subseteq_{1} (node set inclusion) using \subseteq_{0} (Boolean inclusion)
\rightarrow Simply add a new node below the selection node
New tree is Boolean (no selection node)
In a given XML tree: pattern matches / does not match.

3. XPath Containment Test

4 techniques of testing XPath (Boolean) containment:
(1) The Canonical Model Technique
(2) The Homomorphism Technique
(3) The Automaton Technique
(4) The Chase Technique

3. XPath Containment Test

Canonical Model - XPath(/, / /, [], *)
Idea: if there exists a tree that matches p but not q, then such a tree exists of size polynomial in the size of p an q.

Simple: remember, if you know that the XML document is only of height 5, then IIa/b/*/c could be enumerated by /a/b/*/c |/*/a/b/*/c |/*/*/a/b/*/c |/*/*/*/a...

Similarly, we try to construct a counter example tree, by replacing in p
\rightarrow every * by some new symbol "z"
\rightarrow every II by z/, z/z/, z/z/z/, ... z/z/..|z/

$N+1$ many z's

3. XPath Containment Test

Canonical Model - XPath(/, / /, [], *)

p's patter tree

3. XPath Containment Test

Homomorphism h maps each node of q's query tree Q to a node of p's query tree P such that
(1) root of Q is mapped to root of P
(2) if (u, v) is child-edge of Q then $(h(u), h(v))$ is child-edge of P
(3) if (u, v) is descendant-edge of Q, then $h(v)$ is a "below" $h(u)$ in P
(4) if u is labeled by "e" (not *), then $h(u)$ is also labeled by "e".
p,q expressions in XPath(/, //, [])

Theorem

$\mathrm{p} \subseteq_{0} \mathrm{q}$ if and only if there is a homomorphism from Q to P .

3. XPath Containment Test

Homomorphism h maps each node of q's query tree Q to a node of p's query tree P such that

p's patter tree
q's patter tree
(1) root of Q is mapped to root of P
(2) if (u, v) is child-edge of Q then $(h(u), h(v))$ is child-edge of P
(3) if (u, v) is descendant-edge of Q, then
$h(v)$ is a "below" $h(u)$ in P
(4) if u is labeled by "e" (not *), then $h(u)$ is also labeled by "e".

3. XPath Containment Test

Homomorphism h maps each node of q's query tree Q to a node of p's query tree P such that

p's patter tree
q's patter tree
(1) root of Q is mapped to root of P
(2) if (u, v) is child-edge of Q then $(h(u), h(v))$ is child-edge of P
(3) if (u, v) is descendant-edge of Q, then
$h(v)$ is a "below" $h(u)$ in P
(4) if u is labeled by "e" (not *), then $h(u)$ is also labeled by "e".

3. XPath Containment Test

Homomorphism h maps each node of q's query tree Q to a node of p's query tree P such that

(1) root of Q is mapped to root of P
(2) if (u, v) is child-edge of Q then $(h(u), h(v))$ is child-edge of P
(3) if (u, v) is descendant-edge of Q, then
$h(v)$ is a "below" $h(u)$ in P
(4) if u is labeled by "e" (not *), then $h(u)$ is also labeled by "e".

3. XPath Containment Test

Homomorphism h maps each node of q's query tree Q to a node of p's query tree P such that

\rightarrow hom. h exists from Q to P , thus $\mathrm{p} \subseteq_{0} q$ must hold!
(1) root of Q is mapped to root of P
(2) if (u, v) is child-edge of Q then $(h(u), h(v))$ is child-edge of P
(3) if (u, v) is descendant-edge of Q, then
$h(v)$ is a "below" $h(u)$ in P
(4) if u is labeled by "e" (not *), then $h(u)$ is also labeled by "e".

3. XPath Containment Test

Homomorphism h maps each node of q's query tree Q to a node of p's query tree P such that
(1) root of Q is mapped to root of P
(2) if (u, v) is child-edge of Q then $(h(u), h(v))$ is child-edge of P
(3) if (u, v) is descendant-edge of Q, then

$$
h(v) \text { is a "below" } h(u) \text { in } P
$$

(4) if u is labeled by " e " (not *), then $h(u)$ is also labeled by "e".
p, q expressions in XPath(/, //, [])
Theorem
$\mathrm{p} \subseteq_{0} \mathrm{q}$ if and only if there is a homomorphism from Q to P .

Cave If we add the star (*) then homomorphism need not exist!
\rightarrow there are $p, q \in \operatorname{XPath}(\prime, / /,[], *)$ such that $p \subseteq_{0} q$ and there is no homomorphism from Q to P :

3. XPath Containment Test

$[/ \mathrm{a} / \mathrm{b}[. / \mathrm{b}[. / \mathrm{b} / \mathrm{d}] / / \mathrm{c}] / \star / \mathrm{c}]$
$[/ \mathrm{a} / \mathrm{b}[. / \mathrm{b} / \mathrm{d}] / * / / \mathrm{c}]$

IS there a homomorphism??
Cave If we add the star (*) then homomorphism need not exist!
\rightarrow there are $\mathrm{p}, \mathrm{q} \in \operatorname{XPath}\left(1, / 1,[1, *)\right.$ such that $\mathrm{p} \subseteq_{0} q$ and there is no homomorphism from Q to P :
$\mathrm{p}=/ \mathrm{a}[. / / \mathrm{b}[\mathrm{c} / * / / \mathrm{d}] / \mathrm{b}[\mathrm{c} / / \mathrm{d}] / \mathrm{b}[\mathrm{c} / \mathrm{d}]]$
$\mathrm{q}=/ \mathrm{a}[. / / \mathrm{b}[\mathrm{c} / * / / \mathrm{d}] / \mathrm{b}[\mathrm{c} / \mathrm{d}]]$

Cave If we add the star (*) then homomorphism need not exist!
\rightarrow there are $\mathrm{p}, \mathrm{q} \in \operatorname{XPath}(/, / /,[], *)$ such that $\mathrm{p} \subseteq_{0} q$ and there is no homomorphism from Q to $\mathrm{P} \otimes$
$p=/ a[. / / b[c / * / / d] / b[c / / d] / b[c / d]]$
$q=/ a[. / / b[c / * / / d] / b[c / d]]$

Cave If we add the star (*) then homomorphism need not exist!
\rightarrow there are $\mathrm{p}, \mathrm{q} \in \mathrm{XPath}(\prime, / 1,[], *)$ such that $\mathrm{p} \subseteq_{0} q$ and there is no homomorphism from Q to $\mathrm{P} \otimes$

Getting Started Latest Headlines
University of Lübeck, Institute of Information Systems, www.ifis.uni-luebeck.de

XPath-Containment Checker

Implemented by Khaled Haj-Yahya (khaled.h at gmx.de) Supervised by B.C.Hammerschmidt (former)

This is a Java implementation of the theoretical work of Gerome Miklau and Dan Suciu (containment and Equivalence
for a Fragment of XPath J. ACM 51(1): 2-45 (2004) and containment
and Equivalence for a Fragment of XPath. PODS 2002)

Instructions:

Enter two XPath expressions in the abbreviated syntax and press the button.
For instance:
if $\mathrm{p}=/ \mathrm{a}[\mathrm{b}]$ and $\mathrm{p}^{\prime}=/ \mathrm{a}\left[{ }^{*}\right]$
the algorithm will detect that p is a subset of p^{\prime}.
Or if $\mathrm{p}=/ \mathrm{a} / / * / \mathrm{b}$ and $\mathrm{p}^{\prime}=/ \mathrm{a} / * / / \mathrm{b}$
the algorithm will detect that p is equal to p^{\prime}
because the subset equation holds in both directions.

Download the Java Source Code

Download Khaled's bachelor thesis (in German)

[^0]our system administrator: webmaster at ifis.uni-luebeck.de.

3. XPath Containment Test

Automaton Technique
Recall: for any DTD there is a tree automaton which recognized the corresponding trees.

Similarly, for any XPath(,$/$ /, [] , *, ।) expression ex we can construct a (non-deterministic bottom-up) tree automaton A which accepts a tree if and only if ex matches the tree.

Theorem

Containment test of XPath(/ , / , [] , *, l) in the presence of DTDs can be solved in EXPTIME.

Exponential (deterministic) time
Blow-up due to non-determinism of tree automaton.
BUT: no hope for improvement:
The problem is actually complete for EXPTIME.

3. XPath Containment Test

Automaton Technique
Recall: for any DTD there is a tree automaton which recognized the corresponding trees.

Similarly, for any XPath(,$/$ /, [] , *, ।) expression ex we can construct a (non-deterministic bottom-up) tree automaton A which accepts a tree if and only if ex matches the tree.

Theorem

Containment test of XPath(, / / , [] , *, ।) in the presence of DTDs can be solved in EXPTIME.

Proof Idea construct automaton for all possible counter example trees. Test if this automaton accepts any tree.

3. XPath Containment Test

Automaton Technique
Recall: for any DTD there is a tree automaton which recognized the corresponding trees.

Similarly, for any XPath(,$/$ /, [] , *, ।) expression ex we can construct a (non-deterministic bottom-up) tree automaton A which accepts a tree if and only if ex matches the tree.

Theorem
Containment test of XPath (, / / , [] , *, l) in the presence of DTDs can be solved in EXPTIME.
\rightarrow Automata can also be Tested for Finiteness!

Emptiness test for automata

Proof Idea construct automaton for all possible

3. XPath Containment Test

Chase Technique -- 1979 relational DB's to check query containment in the presence of integrity constraints.

Example

("the chase"
extends the relational homomorphsim technique)
p = /a/b//d
$q=/ a / / c$
Is p contained in q for E-conform documents?

First Possibility: use tree automata
\rightarrow Construct automata Ap, Aq, AE
\rightarrow Construct Bq for the complement of Aq (=not q)
\rightarrow Intersect Bq with Ap with AE (gives automaton A)
\rightarrow Check if A accepts any tree.

3. XPath Containment Test

Chase Technique -- 1979 relational DB's to check query containment in the presence of integrity constraints.

Each b-element has a d-child and a c-child
c1: $b \rightarrow d$
c2: $b \rightarrow c$

a

d
p's pattern tree

3. XPath Containment Test

Chase Technique -- 1979 relational DB's to check query containment in the presence of integrity constraints.

Example			
DToot	\rightarrow	a^{*}	
a	\rightarrow	$b^{*} \quad c^{*}$	
b	\rightarrow	$d+c+$	
c	\rightarrow	$b ? c$	

("the chase"
extends the relational homomorphsim technique)
$p=/ a / b / / d$
$q=/ a / / c$
Is p contained in q for E-conform documents?

Each b-element has a d-child and a c-child \rightarrow constraints
c1: $b \rightarrow d$
c2: $b \rightarrow c$

3. XPath Containment Test

Chase Technique -- 1979 relational DB's to check query containment in the presence of integrity constraints.

Example

$$
\text { DTD } \mathrm{E}=\begin{array}{lll}
\text { root } & \rightarrow & \mathrm{a}^{*} \\
\mathrm{a} & \rightarrow & \mathrm{~b}^{*} \text { | } \mathrm{c}^{*} \\
\mathrm{~b} & \rightarrow & \mathrm{~d}+\mathrm{c}+ \\
\mathrm{c} & \rightarrow & \mathrm{~b} ? \mathrm{c} ?
\end{array}
$$

("the chase"
extends the relational homomorphsim technique)
$p=/ a / b / / d$
$q=/ a / / c$

Is p contained in q for E-conform documents?

Each b-element has a d-child and a c-child \rightarrow constraints
c1: $b \rightarrow d$
c2: $b \rightarrow c$
p is contained in q
in the presence
of the DTD E

END Lecture 9

[^0]: If there is no application on the right side please contact

