1a)
Not well-formed, violation of grammar rule [14]: the symbol "<" is not allowed Inside of CharData
1b)
Not well-formed, violation of grammar rule [5]: the symbols "く" and ">" may not appear inside of tag name.
1c)
Not well-formed, violation of grammar rule [39] (there are four b-Start-tags but only tree b-End-tags)
1d)
Not well-formed, violation of grammar rule [10]: the symbol "く" may not appear inside of an attribute value.
1e)
Well-formed.
1f)
Well-formed.
1g)
Well-formed.
1h)
Not well-formed. Grammar violation of rule [39] just as for c).
2)
n=root;
repeat \{
while(lastChild(n)! $=$ NIL)
\{ $n=$ lastChild (n);
If(nodeType(n)==TEXT_NODE) print(nodeValue(n));
\}
while(previousSibling(n)=NIL)
\{ $n=$ parent (n); $\}$
$n=$ nextSibling(n);
if(nodeType(n)==TEXT_NODE) print(nodeValue(n));
\}
3)
id=1
while (lab(id)! $="$ " $)$
\{ if (lab(id)=="a") count[id]=1 else count[id]=0; for each child in dag(id) do
\{
count[id] $=$ count[id] + count[child $]$
\}
$i d=i d+1$
\}
4)

When computing the minimal DAG, we need to determine whether a given subtree has occurred already. If we keep a table of pointers to subtrees that have already occurred, then to check for a given subtree if it is in the table takes worst case time
(\# of trees in table) * (\# nodes in the subtree)
Which in the worst case is quadratic in the size of the input tree!

With hashing, we only need
(\#trees in the hash bucket) * (\#nodes in the subtree).

For the example, take hash(tree) $=1$ if tree is a leaf and hash (tree) $=2$ if not a leaf and contains no " f "
hash $($ tree $)=3$ in all other cases.

Then
hash(c) = bucket 1
hash($b(c, c))=$ bucket 2
hash(f) = bucket 1
hash($b(f, c))=$ bucket 3
Etc.
Without hashing: check up to 6 nodes each time.
With hash: check only up to 3 nodes each time!
5)

Descendants(Node p)\{

```
    for(i=1; i<size(p); i++) print( p +i )
}
Children(Node p){
    c = p+1;
    while(c < p+size(p) ) { print(c ); c=c+size(c)}
}
Parent(Node p){
    for(i=1; i<p; i++) if p is in Children(i) then print(i)
}
Following-Siblings(Node p){
    f=p + size(p);
    while( f < Parent(p) + p ){print(f ); f=f+size(f)}
}
Preceding(Node p){
    for(i=1; i<p; i++) if(p not in Descendants (i)) then print(i)
}
```

6a)
The string " a " is accepted; the string " c " is not accepted. It is not deterministic (the initial state has two outgoing a-edges)

6b)
$c^{\star}(a+b)(a+b+c)^{\star}$
6c)
Not 1-unambigous: Glushkov automaton is non-deterministic.

6d)
$\left(b^{\star}(a b)^{\star}\right)^{\star}$

