XML and Databases Efficient XPath evaluation

Kim.Nguyen@nicta.com.au

Week 7

XPath

Given an XPath query, how to return the selected set of nodes?

- NodeSet algorithm: very easy, very inefficient

XPath

Given an XPath query, how to return the selected set of nodes?

- NodeSet algorithm: very easy, very inefficient
- Automata-based algorithm: very efficient, not to hard ;-)

XPath

Given an XPath query, how to return the selected set of nodes?

- NodeSet algorithm: very easy, very inefficient
- Automata-based algorithm: very efficient, not to hard ;-)

XPath

Given an XPath query, how to return the selected set of nodes?

- NodeSet algorithm: very easy, very inefficient
- Automata-based algorithm: very efficient, not to hard ;-)

We assume that the XPath query has been parsed into a sequence:

$$
\begin{aligned}
p & ::=\left[\left(a_{1}, I_{1}, p_{1}\right) ; \ldots ;\left(a_{n}, I_{n}, p_{n}\right)\right] \\
a & ::=\operatorname{child}|\operatorname{descendant}| \ldots \\
\mid & ::=* \mid \text { tagname } \mid \text { text }()
\end{aligned}
$$

XPath

Given an XPath query, how to return the selected set of nodes?

- NodeSet algorithm: very easy, very inefficient
- Automata-based algorithm: very efficient, not to hard ;-)

We assume that the XPath query has been parsed into a sequence:

$$
\begin{aligned}
p & ::=\left[\left(a_{1}, I_{1}, p_{1}\right) ; \ldots ;\left(a_{n}, I_{n}, p_{n}\right)\right] \\
a & ::=\text { child|descendant } \mid \ldots \\
\mid & ::=\text { |tagname|text }()
\end{aligned}
$$

All the p_{i} have the form:

$$
p_{i}::=\left[\left(a_{i 1}, l_{i 1},[]\right) ; \ldots ;\left(a_{i n}, l_{i n},[]\right)\right]
$$

XPath

Given an XPath query, how to return the selected set of nodes?

- NodeSet algorithm: very easy, very inefficient
- Automata-based algorithm: very efficient, not to hard ;-)

We assume that the XPath query has been parsed into a sequence:

$$
\begin{aligned}
p & ::=\left[\left(a_{1}, I_{1}, p_{1}\right) ; \ldots ;\left(a_{n}, I_{n}, p_{n}\right)\right] \\
a & ::=\text { child|descendant } \mid \ldots \\
\mid & ::=\text { |tagname|text }()
\end{aligned}
$$

All the p_{i} have the form:

$$
p_{i}::=\left[\left(a_{i 1}, l_{i 1},[]\right) ; \ldots ;\left(a_{i n}, l_{i n},[]\right)\right]
$$

Node Set Algorithm (1/6)

> NodeSet eval(Path p, NodeSet nodes,bool all)

Given a set of nodes of nodes of a document apply the path p to the set of node and returns:

- All the nodes matching the query if all is true
- The first node matching the query if all is false

NodeSet eval_axis(Axis a, Label l, NodeSet nodes,bool all)
Given a set of nodes of nodes of a document returns the nodes in the axis a with label 1

- if all is true, returns all the matching nodes.
- if all is false, returns the first matching node

Node Set Algorithm (2/6)

NodeSet eval(Path p, NodeSet nodes, bool all)\{ NodeSet $\mathrm{r}=$ nodes;
//we apply the steps one after another
for each (a,l,f) in p \{
//we select all the node matching the axis and label $r=$ eval_axis (a,l,r,all);
if (filter != []) \{
$r^{\prime}=$ Empty;
for each n in r
if (eval(f,\{ n \},false) != Empty) $r^{\prime}=\operatorname{add}\left(r^{\prime}, n\right)$;
$r=r$;
\};
return r;
\}

Node Set Algorithm (3/6)

NodeSet eval_axis(Axis a, Label I, NodeSet n, bool all) \{
switch (a)\{
child:
return eval_child(l,n,all);
descendant:
return eval_descendant(l,n, all);
//continue for all the axes
\}
\}

Node Set Algorithm (4/6)

NodeSet eval_descendant(Label I, NodeSet n, bool all) \{

NodeSet $r=$ Empty;
for each t in n \{
for each tc in children(t) \{
if (label (tc) = 1) $\{$
$r=\operatorname{add}(r, t c)$;
if (! (a ll)) //we only want the first result return r;
\}; //r contains all the children of t tagged I
$r=r \cup e v a l _d e s c e n d a n t(l, c h i l d r e n(t)) ;$
\}
return r;
\}

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c
Called initially with the NodeSet containing the root

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c
Called initially with the NodeSet containing the root

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c
Called initially with the NodeSet containing the root

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c
Called initially with the NodeSet containing the root

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c
Called initially with the NodeSet containing the root

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c
Called initially with the NodeSet containing the root

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c
Called initially with the NodeSet containing the root

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c
Called initially with the NodeSet containing the root

Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c
Called initially with the NodeSet containing the root

Node Set Algorithm (6/6)

Pros and cons of the algorithm:

+ Easy to implement

Remains very inefficient: $O\left(|D|^{2}\right)$ for forward XPath, $O\left(2^{|Q|}+|D|^{2}\right)$ for full XPath (cf. Lecture)

Node Set Algorithm (6/6)

Pros and cons of the algorithm:

+ Easy to implement
+ Can can be extended to all XPath axes easily

Remains very inefficient: $O\left(|D|^{2}\right)$ for forward XPath, $O\left(2^{|Q|}+|D|^{2}\right)$ for full XPath (cf. Lecture)

Node Set Algorithm (6/6)

Pros and cons of the algorithm:

+ Easy to implement
+ Can can be extended to all XPath axes easily
- May return several copies of the same node, thus either use a Set datastructure for the result, or sort and sieve the result at the end.

Remains very inefficient: $O\left(|D|^{2}\right)$ for forward XPath, $O\left(2^{|Q|}+|D|^{2}\right)$ for full XPath (cf. Lecture)

Node Set Algorithm (6/6)

Pros and cons of the algorithm:

+ Easy to implement
+ Can can be extended to all XPath axes easily
- May return several copies of the same node, thus either use a Set datastructure for the result, or sort and sieve the result at the end.
- Need to traverse many times the tree, cannot be done in streaming Remains very inefficient: $O\left(|D|^{2}\right)$ for forward XPath, $O\left(2^{|Q|}+|D|^{2}\right)$ for full XPath (cf. Lecture)

Automata based algorithm

We proceed in two steps:

- first we see how this works for XPath expressions without filters

Automata based algorithm

We proceed in two steps:

- first we see how this works for XPath expressions without filters
- we add filters

Automata based algorithm

We proceed in two steps:

- first we see how this works for XPath expressions without filters
- we add filters

Automata based algorithm

We proceed in two steps:

- first we see how this works for XPath expressions without filters
- we add filters

The idea is to see the XPath expression as a regular expression matching the paths of the tree. The translation of a forward XPath expression into an NFA is straightforward:

Automata based algorithm

We proceed in two steps:

- first we see how this works for XPath expressions without filters
- we add filters

The idea is to see the XPath expression as a regular expression matching the paths of the tree. The translation of a forward XPath expression into an NFA is straightforward:
//a/b//c becomes:

Automata based algorithm

We proceed in two steps:

- first we see how this works for XPath expressions without filters
- we add filters

The idea is to see the XPath expression as a regular expression matching the paths of the tree. The translation of a forward XPath expression into an NFA is straightforward:
//a/b//c becomes:

Automata based algorithm

We proceed in two steps:

- first we see how this works for XPath expressions without filters
- we add filters

The idea is to see the XPath expression as a regular expression matching the paths of the tree. The translation of a forward XPath expression into an NFA is straightforward:
//a/b//c becomes:

If we determinise, it becomes:

Automata based algorithm

We proceed in two steps:

- first we see how this works for XPath expressions without filters
- we add filters

The idea is to see the XPath expression as a regular expression matching the paths of the tree. The translation of a forward XPath expression into an NFA is straightforward:

If we determinise, it becomes:

Automata based algorithm

Problems of determinisation:

- Exponential blow-up in the number of states

Automata based algorithm

Problems of determinisation:

- Exponential blow-up in the number of states
- computing the default transition $*$ is tricky!

Automata based algorithm

Problems of determinisation:

- Exponential blow-up in the number of states
- computing the default transition $*$ is tricky!

Automata based algorithm

Problems of determinisation:

- Exponential blow-up in the number of states
- computing the default transition $*$ is tricky!

Good news: we don't need to determinize!
Reference:
Processing XML streams with deterministic automata and stream indexes By T.J. Green, A. Gupta, G. Miklau, M. Onizuka, D. Suciu, TODS 2004

Topdown XPath evaluation

// Takes a NFA, a set of states and a document node
// Returns the set of nodes matched by the automaton
NodeSet eval(Automaton a, States S, Node t)\{
//The empty tree yields no result
if ($\mathrm{t}=\mathrm{null}$) return Empty
else $\{/ / E v e r y t h i n g$ is done here, see next slide
$S^{\prime}=\left\{q^{\prime} \mid \forall q \in S\right.$, s.t. $q, I \rightarrow q^{\prime} \in a, I=\operatorname{label}(t)$ or $\left.*\right\}$
$r=$ Empty;
for each t' in children (t) \{

$$
r=r \cup e v a l\left(a, S^{\prime}, t^{\prime}\right) ;
$$

\};
if (finalstate(a) $\in S^{\prime}$)
$r=r \cup\{t\}$
\};
return r;

Topdown XPath evaluation

What does this do?

$$
S^{\prime}=\left\{q^{\prime} \mid \forall q \in S, \text { s.t. } q, I \rightarrow q^{\prime} \in a, I=\operatorname{label}(t) \text { or } *\right\}
$$

Topdown XPath evaluation

What does this do?

$$
S^{\prime}=\left\{q^{\prime} \mid \forall q \in S, \text { s.t. } q, I \rightarrow q^{\prime} \in a, I=\operatorname{label}(t) \text { or } *\right\}
$$

For each state q of the NFA in S it computes the set of states in which we can go with the label of the current node t

- Then we recursively evaluate S^{\prime} on all the children of t
- If we took a transition which lead us to an accept state, then we also need to add t to the final result

Topdown XPath evaluation

What does this do?

$$
S^{\prime}=\left\{q^{\prime} \mid \forall q \in S, \text { s.t. } q, I \rightarrow q^{\prime} \in a, I=\operatorname{label}(t) \text { or } *\right\}
$$

For each state q of the NFA in S it computes the set of states in which we can go with the label of the current node t

- Then we recursively evaluate S^{\prime} on all the children of t
- If we took a transition which lead us to an accept state, then we also need to add t to the final result
To represent the NFA, we need:
- The set of all states, Q, the initial state I, the final state F
- a hash table mapping pairs of states \times labels to states

Topdown XPath evaluation

$$
\begin{aligned}
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \text { 1, a } \mapsto 2 \\
& 1, * \mapsto 1 \\
& \text { 2, } \mathrm{b} \mapsto 3 \\
& \text { 3, c } \mapsto 4 \\
& \text { 3, c } \mapsto 3
\end{aligned}
$$

Topdown XPath evaluation

We start on the $\stackrel{*}{*} \mathrm{a}$
root, with the initial $(1) \xrightarrow{\mathrm{b}} \stackrel{\text { * }}{\rightarrow}$ (3) \xrightarrow{c} (4)
state

$$
\begin{aligned}
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \begin{array}{l}
1, \mathrm{a} \mapsto 2 \\
1, * \mapsto 1 \\
2, \mathrm{~b} \mapsto 3 \\
3, \mathrm{c} \mapsto 4 \\
3, \mathrm{c} \mapsto 3
\end{array}
\end{aligned}
$$

Topdown XPath evaluation

up in two states, $1 Q=\{1,2,3,4\}$ and 2...
$I=\{1\}$
$F=\{4\}$
1, a $\mapsto 2$
1, * $\mapsto 1$
2, $b \mapsto 3$
3, c $\mapsto 4$
3, c $\mapsto 3$

Topdown XPath evaluation

 the first child of the $Q=\{1,2,3,4\}$ root. . .
$I=\{1\}$
$F=\{4\}$
1, a $\mapsto 2$
$1, * \mapsto 1$
2, $b \mapsto 3$
3, c $\mapsto 4$
3, c $\mapsto 3$

Topdown XPath evaluation

$$
\begin{aligned}
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \text { 1, a } \mapsto 2 \\
& \text { 1, * } \mapsto 1 \\
& \text { 2, } \mathrm{b} \mapsto 3 \\
& \text { 3, c } \mapsto 4 \\
& \text { 3, c } \mapsto 3
\end{aligned}
$$

Topdown XPath evaluation

$$
\begin{aligned}
& \stackrel{*}{1}^{\mathrm{a}} \rightarrow\left(2{ }^{\mathrm{b}} \stackrel{*}{(3)}{ }^{\mathrm{c}}\right. \text { (4) } \\
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \begin{array}{l}
1, \mathrm{a} \mapsto 2 \\
1, * \mapsto 1 \\
2, \mathrm{~b} \mapsto 3 \\
3, \mathrm{c} \mapsto 4 \\
3, \mathrm{c} \mapsto 3
\end{array}
\end{aligned}
$$

Topdown XPath evaluation

Topdown XPath evaluation

Topdown XPath evaluation

We arrive in " c ". The $\stackrel{*}{*} \mathrm{a}$ (2) $\xrightarrow{\mathrm{b}} \stackrel{*}{\rightarrow}$ (3) $\xrightarrow{\mathrm{c}}$ (4) returns Empty. One $Q=\{1,2,3,4\}$ of our state is final, $I=\{1\}$
so there is a run of the automaton which $F=\{4\}$ accepts this path, we 1 , a $\mapsto 2$ mark the node as se-
lected.
$1, * \mapsto 1$
2, $b \mapsto 3$
3, c $\mapsto 4$
3, c $\mapsto 3$

Topdown XPath evaluation

$$
\begin{aligned}
& \stackrel{*}{1}^{\mathrm{a}} \rightarrow\left(2{ }^{\mathrm{b}} \stackrel{*}{(3)}{ }^{\mathrm{c}}\right. \text { (4) } \\
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \begin{array}{l}
1, \mathrm{a} \mapsto 2 \\
1, * \mapsto 1 \\
2, \mathrm{~b} \mapsto 3 \\
3, \mathrm{c} \mapsto 4 \\
3, \mathrm{c} \mapsto 3
\end{array}
\end{aligned}
$$

Topdown XPath evaluation

$$
\begin{aligned}
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \text { 1, a } \mapsto 2 \\
& 1, * \mapsto 1 \\
& \text { 2, } \mathrm{b} \mapsto 3 \\
& \text { 3, c } \mapsto 4 \\
& \text { 3, c } \mapsto 3
\end{aligned}
$$

Topdown XPath evaluation

$$
\begin{aligned}
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \text { 1, a } \mapsto 2 \\
& \text { 1, * } \mapsto 1 \\
& \text { 2, } \mathrm{b} \mapsto 3 \\
& \text { 3, c } \mapsto 4 \\
& \text { 3, c } \mapsto 3
\end{aligned}
$$

Topdown XPath evaluation

$$
\begin{aligned}
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \text { 1, a } \mapsto 2 \\
& 1, * \mapsto 1 \\
& \text { 2, } \mathrm{b} \mapsto 3 \\
& \text { 3, c } \mapsto 4 \\
& \text { 3, c } \mapsto 3
\end{aligned}
$$

Topdown XPath evaluation

$$
\begin{aligned}
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \text { 1, a } \mapsto 2 \\
& \text { 1, * } \mapsto 1 \\
& \text { 2, } \mathrm{b} \mapsto 3 \\
& \text { 3, c } \mapsto 4 \\
& \text { 3, c } \mapsto 3
\end{aligned}
$$

Topdown XPath evaluation

$$
\begin{aligned}
& \text { (1) } \left.{ }^{*} \xrightarrow{a}(2) \xrightarrow{b^{*}}{ }^{*}\right)^{c} \text { (4) } \\
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \text { 1, a } \mapsto 2 \\
& 1, * \mapsto 1 \\
& \text { 2, } \mathrm{b} \mapsto 3 \\
& \text { 3, c } \mapsto 4 \\
& \text { 3, c } \mapsto 3
\end{aligned}
$$

Topdown XPath evaluation

Topdown XPath evaluation

$$
\begin{aligned}
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \text { 1, a } \mapsto 2 \\
& 1, * \mapsto 1 \\
& \text { 2, } \mathrm{b} \mapsto 3 \\
& \text { 3, c } \mapsto 4 \\
& \text { 3, c } \mapsto 3
\end{aligned}
$$

Topdown XPath evaluation

$$
\begin{aligned}
& \stackrel{*}{1}^{\mathrm{a}} \rightarrow\left(2{ }^{\mathrm{b}} \stackrel{*}{(3)}{ }^{\mathrm{c}}\right. \text { (4) } \\
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \begin{array}{l}
1, \mathrm{a} \mapsto 2 \\
1, * \mapsto 1 \\
2, \mathrm{~b} \mapsto 3 \\
3, \mathrm{c} \mapsto 4 \\
3, \mathrm{c} \mapsto 3
\end{array}
\end{aligned}
$$

Topdown XPath evaluation

$$
\begin{aligned}
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \text { 1, a } \mapsto 2 \\
& 1, * \mapsto 1 \\
& \text { 2, } \mathrm{b} \mapsto 3 \\
& \text { 3, c } \mapsto 4 \\
& \text { 3, c } \mapsto 3
\end{aligned}
$$

Topdown XPath evaluation

$$
\begin{aligned}
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \text { 1, a } \mapsto 2 \\
& 1, * \mapsto 1 \\
& \text { 2, } \mathrm{b} \mapsto 3 \\
& \text { 3, c } \mapsto 4 \\
& \text { 3, c } \mapsto 3
\end{aligned}
$$

Topdown XPath evaluation

$$
\begin{aligned}
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \text { 1, a } \mapsto 2 \\
& 1, * \mapsto 1 \\
& \text { 2, } \mathrm{b} \mapsto 3 \\
& \text { 3, c } \mapsto 4 \\
& \text { 3, c } \mapsto 3
\end{aligned}
$$

Topdown XPath evaluation

$$
\begin{aligned}
& \stackrel{*}{1}^{\mathrm{a}} \rightarrow\left(2{ }^{\mathrm{b}} \stackrel{*}{(3)}{ }^{\mathrm{c}}\right. \text { (4) } \\
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \begin{array}{l}
1, \mathrm{a} \mapsto 2 \\
1, * \mapsto 1 \\
2, \mathrm{~b} \mapsto 3 \\
3, \mathrm{c} \mapsto 4 \\
3, \mathrm{c} \mapsto 3
\end{array}
\end{aligned}
$$

Topdown XPath evaluation

$$
\begin{aligned}
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \text { 1, a } \mapsto 2 \\
& 1, * \mapsto 1 \\
& \text { 2, } \mathrm{b} \mapsto 3 \\
& \text { 3, c } \mapsto 4 \\
& \text { 3, c } \mapsto 3
\end{aligned}
$$

Topdown XPath evaluation

$$
\begin{aligned}
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \text { 1, a } \mapsto 2 \\
& 1, * \mapsto 1 \\
& \text { 2, } \mathrm{b} \mapsto 3 \\
& \text { 3, c } \mapsto 4 \\
& \text { 3, c } \mapsto 3
\end{aligned}
$$

Topdown XPath evaluation

$$
\begin{aligned}
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \text { 1, a } \mapsto 2 \\
& 1, * \mapsto 1 \\
& \text { 2, } \mathrm{b} \mapsto 3 \\
& \text { 3, c } \mapsto 4 \\
& \text { 3, c } \mapsto 3
\end{aligned}
$$

Topdown XPath evaluation

$$
\begin{aligned}
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \text { 1, a } \mapsto 2 \\
& 1, * \mapsto 1 \\
& \text { 2, } \mathrm{b} \mapsto 3 \\
& \text { 3, c } \mapsto 4 \\
& \text { 3, c } \mapsto 3
\end{aligned}
$$

Topdown XPath evaluation

$$
\begin{aligned}
& Q=\{1,2,3,4\} \\
& I=\{1\} \\
& F=\{4\} \\
& \text { 1, a } \mapsto 2 \\
& 1, * \mapsto 1 \\
& \text { 2, } \mathrm{b} \mapsto 3 \\
& \text { 3, c } \mapsto 4 \\
& \text { 3, c } \mapsto 3
\end{aligned}
$$

Topdown XPath evaluation

What is the complexity of the algorithm?

- We do only one pre-order traversal

Topdown XPath evaluation

What is the complexity of the algorithm?

- We do only one pre-order traversal
- For each node, we perform the following:

Topdown XPath evaluation

What is the complexity of the algorithm?

- We do only one pre-order traversal
- For each node, we perform the following:

1. $S^{\prime}=\left\{q^{\prime} \mid \forall q \in S\right.$, s.t. $q, I \rightarrow q^{\prime} \in a, I=\operatorname{label}(t)$ or $\left.*\right\}$

Topdown XPath evaluation

What is the complexity of the algorithm?

- We do only one pre-order traversal
- For each node, we perform the following:

1. $S^{\prime}=\left\{q^{\prime} \mid \forall q \in S\right.$, s.t. $q, I \rightarrow q^{\prime} \in a, I=\operatorname{label}(t)$ or $\left.*\right\}$
\Rightarrow this is linear in the size of S, which is at most as big as the number of states in the NFA. As we have seen, the number of states is linear in the size of the query so this operation costs $|Q|$

Topdown XPath evaluation

What is the complexity of the algorithm?

- We do only one pre-order traversal
- For each node, we perform the following:

1. $S^{\prime}=\left\{q^{\prime} \mid \forall q \in S\right.$, s.t. $q, I \rightarrow q^{\prime} \in a, I=\operatorname{label}(t)$ or $\left.*\right\}$
\Rightarrow this is linear in the size of S, which is at most as big as the number of states in the NFA. As we have seen, the number of states is linear in the size of the query so this operation costs $|Q|$
2. $r=r \cup\{t\}$

Topdown XPath evaluation

What is the complexity of the algorithm?

- We do only one pre-order traversal
- For each node, we perform the following:

1. $S^{\prime}=\left\{q^{\prime} \mid \forall q \in S\right.$, s.t. $q, I \rightarrow q^{\prime} \in a, I=\operatorname{label}(t)$ or $\left.*\right\}$
\Rightarrow this is linear in the size of S, which is at most as big as the number of states in the NFA. As we have seen, the number of states is linear in the size of the query so this operation costs $|Q|$
2. $r=r \cup\{t\}$
\Rightarrow Since we traverse the tree in pre-order and only once for every node we can use a list for the result set, and just add $\{t\}$ at the begining, which is constant time. In particular, we don't have to sort the result, nor use a data structure with $|\mathrm{O}(\log (\mathrm{n}))|$ insertion to guarantee the right order nor do we have to filter the results to remove duplicates: huge improvement.

Topdown XPath evaluation

What is the complexity of the algorithm?

- We do only one pre-order traversal
- For each node, we perform the following:

1. $S^{\prime}=\left\{q^{\prime} \mid \forall q \in S\right.$, s.t. $q, I \rightarrow q^{\prime} \in a, I=\operatorname{label}(t)$ or $\left.*\right\}$
\Rightarrow this is linear in the size of S, which is at most as big as the number of states in the NFA. As we have seen, the number of states is linear in the size of the query so this operation costs $|Q|$
2. $r=r \cup\{t\}$
\Rightarrow Since we traverse the tree in pre-order and only once for every node we can use a list for the result set, and just add $\{t\}$ at the begining, which is constant time. In particular, we don't have to sort the result, nor use a data structure with $|\mathrm{O}(\log (\mathrm{n}))|$ insertion to guarantee the right order nor do we have to filter the results to remove duplicates: huge improvement.

Topdown XPath evaluation

What is the complexity of the algorithm?

- We do only one pre-order traversal
- For each node, we perform the following:

1. $S^{\prime}=\left\{q^{\prime} \mid \forall q \in S\right.$, s.t. $q, I \rightarrow q^{\prime} \in a, I=\operatorname{label}(t)$ or $\left.*\right\}$
\Rightarrow this is linear in the size of S, which is at most as big as the number of states in the NFA. As we have seen, the number of states is linear in the size of the query so this operation costs $|Q|$
2. $r=r \cup\{t\}$
\Rightarrow Since we traverse the tree in pre-order and only once for every node we can use a list for the result set, and just add $\{t\}$ at the begining, which is constant time. In particular, we don't have to sort the result, nor use a data structure with $|\mathrm{O}(\log (\mathrm{n}))|$ insertion to guarantee the right order nor do we have to filter the results to remove duplicates: huge improvement.
Complexity is combined linear time $O(|Q| \times|D|)$, which is the best complexity for this problem (cf lecture).

Topdown XPath evaluation

How do we add filters?

Topdown XPath evaluation

How do we add filters?
Consider:
//a[d//e]/b//c

Topdown XPath evaluation

How do we add filters?
Consider:
//a[d//e]/b//c

We build two automata:

Topdown XPath evaluation

How do we add filters?
Consider:
//a[d//e]/b//c

We build two automata:

Topdown XPath evaluation

NodeSet eval(Automata a, States S, Node t, FilterStack FS) \{
if ($\mathrm{t}=$ null) return Empty,FS
else \{
$S^{\prime}=\left\{q^{\prime} \mid q, I \rightarrow q^{\prime} \in a, I=\operatorname{label}(t)\right.$ or $\left.*\right\}$
FilterSet $f=\{\{$ InitState(FilterAuto (q)) $\} \mid q \in S\}$
FS'=push (f, FS) ;
FS" $=$ EmptyStack;
for each fs in FS' \{
fs'=Empty ;
for each (_,s) in fs
$\mathrm{fs}^{\prime}=\mathrm{fs}{ }^{\prime} \cup\left\{s \times\left\{q^{\prime} \mid q, I \rightarrow q^{\prime} \in a_{i}, I=\operatorname{label}(t)\right.\right.$ or $\left.\left.*\right\}\right\}$ push (FS", fs');
\}

Topdown XPath evaluation

```
\(r=\) Empty;
fs = Empty;
for each t' in children(t) \{
    \(r^{\prime}\), S' \(^{\prime \prime}=\) eval (a, \(\left.\mathrm{S}^{\prime}, \mathrm{t}^{\prime}, \mathrm{FS}^{\prime \prime}\right)\);
    \(r=r \cup r^{\prime}\);
    fs"' = pop(FS"');
    fs" \(=\operatorname{pop}\left(F S^{\prime \prime}\right)\);
    for each (s,s') in fs"'
        if (finalstate(a') \(\mathrm{u}^{\prime} \in \mathrm{s}^{\prime}\) )
        remove (_,s) from fs";
    FS" = push(FS",fs");
\};
```


Topdown XPath evaluation

$$
\begin{aligned}
& \text { fs }=\text { peek }\left(\mathrm{FS}^{\prime \prime}\right) ; \\
& \text { if (isempty } \left.\left(\mathrm{fs}^{\prime}\right)\right) \\
& \quad \text { if }(\text { finalstate }(a) \in S) \\
& r=r \cup\{t\} ; \\
& \text { else } \\
& \quad r=\text { Empty } \\
& \text { return }\left(r, F S^{\prime \prime}\right) ;
\end{aligned}
$$

For the assignment?

- DOM, Dag: that's the same, you only need to implement FirstChild/NextSibling correctly for the Dag!

For the assignment?

- DOM, Dag: that's the same, you only need to implement FirstChild/NextSibling correctly for the Dag!
- SAX: You rewrite the recursive function eval into to SAX events, and manage a stack yourself, but the principle is the same.

For the assignment?

- DOM, Dag: that's the same, you only need to implement FirstChild/NextSibling correctly for the Dag!
- SAX: You rewrite the recursive function eval into to SAX events, and manage a stack yourself, but the principle is the same.
- Text nodes ? You can put a special label \$ in the automata and use it to match PCDATA_NODE DOM nodes or characters() SAX events

For the assignment?

- DOM, Dag: that's the same, you only need to implement FirstChild/NextSibling correctly for the Dag!
- SAX: You rewrite the recursive function eval into to SAX events, and manage a stack yourself, but the principle is the same.
- Text nodes ? You can put a special label $\$$ in the automata and use it to match PCDATA_NODE DOM nodes or characters () SAX events
- following-siblings? You keep the following sibling transitions in your automaton, and trigger them during the children iteration

For the assignment?

- DOM, Dag: that's the same, you only need to implement FirstChild/NextSibling correctly for the Dag!
- SAX: You rewrite the recursive function eval into to SAX events, and manage a stack yourself, but the principle is the same.
- Text nodes ? You can put a special label $\$$ in the automata and use it to match PCDATA_NODE DOM nodes or characters() SAX events
- following-siblings? You keep the following sibling transitions in your automaton, and trigger them during the children iteration

For the assignment?

- DOM, Dag: that's the same, you only need to implement FirstChild/NextSibling correctly for the Dag!
- SAX: You rewrite the recursive function eval into to SAX events, and manage a stack yourself, but the principle is the same.
- Text nodes ? You can put a special label $\$$ in the automata and use it to match PCDATA_NODE DOM nodes or characters() SAX events
- following-siblings? You keep the following sibling transitions in your automaton, and trigger them during the children iteration

